Rayleigh-Benard problem for an anomalous fluid

被引:0
|
作者
A. N. Ermolenko
机构
[1] Novosibirsk State University,
关键词
Rayleigh-Benard problem; Oberbeck-Boussinesq approximation; anomalous fluid; instability; perturbation monotonicity principle;
D O I
暂无
中图分类号
学科分类号
摘要
The stability of the state of rest of a heated infinite horizontal layer of a viscous heat-conducting fluid (the Rayleigh-Benard problem) is considered. The equation of state for the fluid takes into account the nonmonotonic temperature and pressure dependence of water density. Instability of the mechanical equilibrium with respect to small monotonic perturbations is studied. The effect of the problem parameters on the Rayleigh numbers and their corresponding critical motions is investigated numerically using linear theory. Numerical investigation of the spectral problem is based on the Godunov-Abramov orthogonalization method. The calculation results are compared with the well-known results for the limiting case where the density is considered a quadratic function of temperature and does not depend on pressure.
引用
收藏
页码:166 / 175
页数:9
相关论文
共 50 条
  • [1] Rayleigh-Benard problem for an anomalous fluid
    Ermolenko, A. N.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2007, 48 (02) : 166 - 175
  • [2] The Rayleigh-Benard Problem for Compressible Fluid Flows
    Feireisl, Eduard
    Swierczewska-Gwiazda, Agnieszka
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (01)
  • [3] Nonequilibrium fluctuations in the Rayleigh-Benard problem for binary fluid mixtures
    de Zárate, JMO
    Peluso, F
    Sengers, JV
    EUROPEAN PHYSICAL JOURNAL E, 2004, 15 (03): : 319 - 333
  • [4] Rayleigh-Benard convection of viscoelastic fluid
    Demir, H
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 251 - 267
  • [5] Rayleigh-Benard Convection in a Radiating Fluid
    Siddheshwar, P. G.
    Kanchana, C.
    Laroze, D.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2022, 144 (10):
  • [6] A Schwarz Method for a Rayleigh-Benard Problem
    Herrero, H.
    Pla, F.
    Ruiz-Ferrandez, M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 376 - 392
  • [7] The reactive Rayleigh-Benard problem with throughflow
    Bayliss, A
    Ma, TK
    Matkowsky, BJ
    Wahle, CW
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 61 (04) : 1103 - 1142
  • [8] On the Rayleigh-Benard problem in the continuum limit
    Manela, A
    Frankel, I
    PHYSICS OF FLUIDS, 2005, 17 (03) : 036101 - 1
  • [9] Boussinesq Approximation in the Rayleigh-Benard Problem
    Nadolin, K. A.
    Fluid Dynamics, 30 (05):
  • [10] RAYLEIGH-BENARD PROBLEM FOR THERMOMICROPOLAR FLUIDS
    Kalita, Piotr
    Lukaszewicz, Grzegorz
    Siemianowski, Jakub
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 52 (02) : 477 - 514