Optimization of Stamping Process Parameters Based on Improved GA-BP Neural Network Model

被引:0
|
作者
Yanmin Xie
Wei Li
Cheng Liu
Meiyu Du
Kai Feng
机构
[1] Southwest Jiaotong University,School of Mechanical Engineering
关键词
Genetic algorithm; BP neural network; Stamping process parameters; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Reasonable process parameters are the key measures to ensure the quality of stamping products. In order to reduce the risk of cracking and wrinkling of stamping products, an improved genetic algorithm is proposed and used to optimize the weights and thresholds of the BP neural network(BPNN). A surrogate model combining an improved genetic algorithm and BPNN(IGA-BPNN)is developed. Taking double C as the research object, the training samples and test samples are extracted through Latin hypercube. The training output of IGA-BPNN model is obtained by AutoForm simulation, and the mapping relationship between process parameters and forming quality is established. Then the mapping relationship is optimized by IGA to obtain the optimal process parameters. The results show that this method reduces the wrinkling of the flange edge of double C and obviously improves the forming quality.
引用
收藏
页码:1129 / 1145
页数:16
相关论文
共 50 条
  • [31] A New Sustainability Index System and Evaluation Model Based on the GA-BP Neural Network Model
    He, Yiheng
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 1533 - 1537
  • [32] Kansei evaluation model of tractor shape design based on GA-BP neural network
    Guo, Huiping
    Yang, Fuzeng
    Advances in Modelling and Analysis C, 2016, 71 (01): : 92 - 109
  • [33] A Model of Injury Severity Prediction in Traffic Accident Based on GA-BP Neural Network
    Wang, Shuang
    Wei, Chong
    Wei, Yansha
    Wang, Wenzhe
    Wu, Fei
    CICTP 2019: TRANSPORTATION IN CHINA-CONNECTING THE WORLD, 2019, : 2470 - 2481
  • [34] Research on soil moisture inversion method based on GA-BP neural network model
    Liang, Yue-ji
    Ren, Chao
    Wang, Hao-yu
    Huang, Yi-bang
    Zheng, Zhong-tian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (5-6) : 2087 - 2103
  • [35] Prediction and optimization of tower mill grinding power consumption based on GA-BP neural network
    Wang, Ziyang
    Hou, Ying
    Sobhy, Ahmed
    PHYSICOCHEMICAL PROBLEMS OF MINERAL PROCESSING, 2023, 59 (06):
  • [36] Optimization Analysis of Distribution of RFID Multi-tag based on GA-BP Neural Network
    Zhou, Yujun
    Yu, Xiaolei
    Wang, Donghua
    Zhao, Zhimin
    Zhuang, Xiao
    Yu, Yinshan
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 850 - 854
  • [37] Adaptive switching median filter based on GA-BP neural network
    Ye, Xiaoling
    Dou, Yanyan
    Liu, Bo
    MATERIALS PROCESSING AND MANUFACTURING III, PTS 1-4, 2013, 753-755 : 2980 - 2984
  • [38] Prediction of Residents' Travel Modes Based on GA-BP Neural Network
    Kong, Yaoyao
    Liang, Yanping
    Xu, Jiajun
    CICTP 2020: ADVANCED TRANSPORTATION TECHNOLOGIES AND DEVELOPMENT-ENHANCING CONNECTIONS, 2020, : 157 - 166
  • [39] Fuzzy Neural Network Controller Based on Hybrid GA-BP Algorithm
    Chen Yin-ping
    Wu Hongxia
    COMPUTING, CONTROL AND INDUSTRIAL ENGINEERING IV, 2013, 823 : 335 - 339
  • [40] Integrality detection of pile foundation based on GA-BP neural network
    Rong, L. X.
    2008 PROCEEDINGS OF INFORMATION TECHNOLOGY AND ENVIRONMENTAL SYSTEM SCIENCES: ITESS 2008, VOL 3, 2008, : 79 - 83