Optimization of Stamping Process Parameters Based on Improved GA-BP Neural Network Model

被引:0
|
作者
Yanmin Xie
Wei Li
Cheng Liu
Meiyu Du
Kai Feng
机构
[1] Southwest Jiaotong University,School of Mechanical Engineering
来源
International Journal of Precision Engineering and Manufacturing | 2023年 / 24卷
关键词
Genetic algorithm; BP neural network; Stamping process parameters; Optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Reasonable process parameters are the key measures to ensure the quality of stamping products. In order to reduce the risk of cracking and wrinkling of stamping products, an improved genetic algorithm is proposed and used to optimize the weights and thresholds of the BP neural network(BPNN). A surrogate model combining an improved genetic algorithm and BPNN(IGA-BPNN)is developed. Taking double C as the research object, the training samples and test samples are extracted through Latin hypercube. The training output of IGA-BPNN model is obtained by AutoForm simulation, and the mapping relationship between process parameters and forming quality is established. Then the mapping relationship is optimized by IGA to obtain the optimal process parameters. The results show that this method reduces the wrinkling of the flange edge of double C and obviously improves the forming quality.
引用
收藏
页码:1129 / 1145
页数:16
相关论文
共 50 条
  • [1] Optimization of Stamping Process Parameters Based on Improved GA-BP Neural Network Model
    Xie, Yanmin
    Li, Wei
    Liu, Cheng
    Du, Meiyu
    Feng, Kai
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2023, 24 (07) : 1129 - 1145
  • [2] Temperature prediction and analysis based on improved GA-BP neural network
    Zhang, Ling
    Sun, Xiaoqi
    Gao, Shan
    AIMS ENVIRONMENTAL SCIENCE, 2022, 9 (05) : 735 - 753
  • [3] Evaluation model of Decoy Effectiveness Based on Improved GA-BP Neural Network
    He Chao
    Li Ling
    Liu Peng
    PROGRESS IN MEASUREMENT AND TESTING, PTS 1 AND 2, 2010, 108-111 : 1205 - 1210
  • [4] Optimization of impulse water turbine based on GA-BP neural network arithmetic
    Tang, Lingdi
    Yuan, Shouqi
    Tang, Yue
    Qiu, Zhipeng
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (01) : 241 - 253
  • [5] Optimization of wastewater anaerobic digestion treatment based on GA-BP neural network
    Zhao, Hua-Yang
    Huang, Feng-Lan
    Li, Li
    Zhang, Chun-You
    DESALINATION AND WATER TREATMENT, 2018, 122 : 30 - 35
  • [6] Optimization of impulse water turbine based on GA-BP neural network arithmetic
    Lingdi Tang
    Shouqi Yuan
    Yue Tang
    Zhipeng Qiu
    Journal of Mechanical Science and Technology, 2019, 33 : 241 - 253
  • [7] Improved BP Neural Network Controller Based on GA Optimization
    Ding, Qun-yan
    2017 INTERNATIONAL CONFERENCE ON SMART GRID AND ELECTRICAL AUTOMATION (ICSGEA), 2017, : 251 - 254
  • [8] Option Pricing Based on GA-BP neural network
    Qian, Long
    Zhao, Jianbin
    Ma, Yue
    8TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2020 & 2021): DEVELOPING GLOBAL DIGITAL ECONOMY AFTER COVID-19, 2022, 199 : 1340 - 1354
  • [9] Optimization of the Screw Conveyor Device Based on a GA-BP Neural Network
    Guo, Qiang
    Zhuang, Yunpeng
    Xu, Houzhuo
    Li, Wei
    Li, Haitao
    Wu, Zhidong
    MACHINES, 2025, 13 (01)
  • [10] UAV Fault Detection based on GA-BP neural network
    Chen, Yuepeng
    Zhang, Cong
    Zhang, Qingyong
    Hu, Xia
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 806 - 811