Asymptotic Properties of Steady Plane Solutions of the Navier–Stokes Equations in a Cone-Like Domain

被引:0
作者
Lili Wang
Wendong Wang
机构
[1] Dalian University of Technology,School of Mathematical Sciences
来源
Journal of Mathematical Fluid Mechanics | 2023年 / 25卷
关键词
Navier–Stokes equations; Liouville type theorem; Asymptotic behavior; Cone-like domain; 35Q30; 35Q10; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by Gilbarg–Weinberger’s early work on asymptotic properties of steady plane solutions of the Navier–Stokes equations on a neighborhood of infinity (Gilbarg andWeinberger in Ann Scuola Norm Super Pisa Cl Sci 5(2):381–404, 1978), we investigate asymptotic properties of steady plane solutions of this system on any cone-like domain of Ω0={(r,θ);r>r0,θ∈(0,θ0)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _0=\{(r,\theta ); r>r_0, \theta \in (0,\theta _0)\} $$\end{document} with finite Dirichlet integral and Navier-slip boundary conditions. It is proved that the velocity of the solution grows more slowly than logr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{\log r}$$\end{document} as in Gilbarg andWeinberger (Ann Scuola Norm Super Pisa Cl Sci 5(2):381–404, 1978), while the mean value of the velocity converges to zero except the case of θ0=π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta _0=\pi $$\end{document}. Noting that Cauchy integral formula representation does not work in these domains due to the boundary obstacle, we explore some new technical lemmas to deal with these general cases. Moreover, Liouville type theorem on these domains and the decay estimates of the pressure or the vorticity are also obtained.
引用
收藏
相关论文
共 65 条
[1]  
Amick CJ(1988)On Leray’s problem of steady Navier–Stokes flow past a body Acta Math. 161 71-130
[2]  
Aramaki J(2014) theory for the div-curl system Int. J. Math. Anal. 8 259-271
[3]  
Barker T(2015)Ancient solutions to Navier–Stokes equations in half space J. Math. Fluid Mech. 17 551-575
[4]  
Seregin G(2012)Decay estimates for steady solutions of the Navier–Stokes equations in two dimensions in the presence of a wall SIAM J. Math. Anal. 44 3346-3368
[5]  
Boeckle C(1980)Nonlinear Schrodinger evolution equations Nonlinear Anal. 4 677-681
[6]  
Wittwer P(2020)Decay and vanishing of some axially symmetric D-solutions of the Navier–Stokes equations J. Funct. Anal. 279 1383-1419
[7]  
Brezis H(2020)Decay and vanishing of some D-Solutions of the Navier–Stokes equations Arch. Rational Mech. Anal. 237 37-48
[8]  
Gallouet T(2014)Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations Commun. Math. Phys. 326 5267-5285
[9]  
Carrilloa B(2016)Liouville type theorems for the steady axially symmetric Navier–Stokes and Magnetohydrodynamic equations Discrete Contin. Dyn. Syst. 36 3951-3978
[10]  
Pan X(2017)On the asymptotic behaviour of 2D stationary Navier–Stokes solutions with symmetry conditions Nonlinearity 30 695-703