Prototype of a Computer Vision-Based CubeSat Detection System for Laser Communications

被引:0
|
作者
I. Medina
J. J. Hernández-Gómez
C. R. Torres-San Miguel
L. Santiago
C. Couder-Castañeda
机构
[1] Instituto Politécnico Nacional,
[2] Centro de Desarrollo Aeroespacial,undefined
[3] Instituto Politécnico Nacional,undefined
[4] Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco,undefined
[5] Sección de Estudios de Posgrado e Investigación,undefined
来源
International Journal of Aeronautical and Space Sciences | 2021年 / 22卷
关键词
Computer vision; CubeSat; Pointing; Tracking; Satellites;
D O I
暂无
中图分类号
学科分类号
摘要
Up to now, CubeSat nano-satellites have strong limitations in communication data rates (∼100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hbox {100}$$\end{document} kbps) and bandwidth due to the strictness of CubeSat standard. However, if they could be endowed with optical communications (data rates up to 1 Gbps in optimal state), CubeSat applications would exponentially increase. Nonetheless, laser communications face some important drawbacks as the development of a very strict and accurate tracking mechanism. This work proposes an on-board fine pointing system to locate an optical ground station beacon using an embedded system complying with the restrictive CubeSat standard. Such on-board fine pointing system works based on computer vision. The experimental prototype is implemented in Matlab/Simulink, within a Raspberry Pi 3B. The main outcome is the usage of off-the-shelf components (COTS), obtaining an efficient tracking with low power consumption in very noisy and reflective environments. The developed system proves to be fast, stable and strong. It also satisfies the strict size and power consumption restrictions of CubeSat standard.
引用
收藏
页码:717 / 725
页数:8
相关论文
共 50 条
  • [31] COMPUTER VISION-BASED DETECTION AND STATE RECOGNITION FOR DISCONNECTING SWITCH IN SUBSTATION AUTOMATION
    Chen, Hongkai
    Zhao, Xiaoguang
    Tan, Min
    Sun, Shiying
    INTERNATIONAL JOURNAL OF ROBOTICS & AUTOMATION, 2017, 32 (01): : 1 - 12
  • [32] A computer vision-based approach to grade simulated cataract surgeries
    Zhu, Junhuan
    Luo, Jiebo
    Soh, Jonathan M.
    Khalifa, Yousuf M.
    MACHINE VISION AND APPLICATIONS, 2015, 26 (01) : 115 - 125
  • [33] Machine learning & computer vision-based optimum black tea fermentation detection
    Bhargava, Anuja
    Bansal, Atul
    Goyal, Vishal
    Shukla, Aasheesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (28) : 43335 - 43347
  • [34] Computer Vision-Based Method for Automatic Detection of Crop Rows in Potato Fields
    Garcia-Santillan, Ivan
    Peluffo-Ordonez, Diego
    Caranqui, Victor
    Pusda, Marco
    Garrido, Fernando
    Granda, Pedro
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY & SYSTEMS (ICITS 2018), 2018, 721 : 355 - 366
  • [35] A hierarchical semantic segmentation framework for computer vision-based bridge damage detection
    Liu, Jingxiao
    Wei, Yujie
    Chen, Bingqing
    Noh, Hae Young
    SMART STRUCTURES AND SYSTEMS, 2023, 31 (04) : 325 - 334
  • [36] Machine learning & computer vision-based optimum black tea fermentation detection
    Anuja Bhargava
    Atul Bansal
    Vishal Goyal
    Aasheesh Shukla
    Multimedia Tools and Applications, 2023, 82 : 43335 - 43347
  • [37] Computer vision-based algorithm for precise defect detection and classification in photovoltaic modules
    Guo, Jian
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [38] Vision-Based Drone Detection in Complex Environments: A Survey
    Liu, Ziyi
    An, Pei
    Yang, You
    Qiu, Shaohua
    Liu, Qiong
    Xu, Xinghua
    DRONES, 2024, 8 (11)
  • [39] Computer Vision-Based Tomato Grading and Sorting
    Kaur, Sukhpreet
    Girdhar, Akshay
    Gill, Jasmeen
    ADVANCES IN DATA AND INFORMATION SCIENCES, VOL 1, 2018, 38 : 75 - 84
  • [40] Computer Vision-Based Wood Identification: A Review
    Silva, Jose Luis
    Bordalo, Rui
    Pissarra, Jose
    de Palacios, Paloma
    FORESTS, 2022, 13 (12):