Prototype of a Computer Vision-Based CubeSat Detection System for Laser Communications

被引:0
|
作者
I. Medina
J. J. Hernández-Gómez
C. R. Torres-San Miguel
L. Santiago
C. Couder-Castañeda
机构
[1] Instituto Politécnico Nacional,
[2] Centro de Desarrollo Aeroespacial,undefined
[3] Instituto Politécnico Nacional,undefined
[4] Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco,undefined
[5] Sección de Estudios de Posgrado e Investigación,undefined
来源
International Journal of Aeronautical and Space Sciences | 2021年 / 22卷
关键词
Computer vision; CubeSat; Pointing; Tracking; Satellites;
D O I
暂无
中图分类号
学科分类号
摘要
Up to now, CubeSat nano-satellites have strong limitations in communication data rates (∼100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim \hbox {100}$$\end{document} kbps) and bandwidth due to the strictness of CubeSat standard. However, if they could be endowed with optical communications (data rates up to 1 Gbps in optimal state), CubeSat applications would exponentially increase. Nonetheless, laser communications face some important drawbacks as the development of a very strict and accurate tracking mechanism. This work proposes an on-board fine pointing system to locate an optical ground station beacon using an embedded system complying with the restrictive CubeSat standard. Such on-board fine pointing system works based on computer vision. The experimental prototype is implemented in Matlab/Simulink, within a Raspberry Pi 3B. The main outcome is the usage of off-the-shelf components (COTS), obtaining an efficient tracking with low power consumption in very noisy and reflective environments. The developed system proves to be fast, stable and strong. It also satisfies the strict size and power consumption restrictions of CubeSat standard.
引用
收藏
页码:717 / 725
页数:8
相关论文
共 50 条
  • [21] Deep Learning Architecture for Computer Vision-based Structural Defect Detection
    Ruoyu Yang
    Shubhendu Kumar Singh
    Mostafa Tavakkoli
    M. Amin Karami
    Rahul Rai
    Applied Intelligence, 2023, 53 : 22850 - 22862
  • [22] Computer Vision-Based Visitor Study as A Decision Support System for Museum
    Budiarto, Arif
    Pardamean, Bens
    Caraka, Rezzy Eko
    2017 INTERNATIONAL CONFERENCE ON INNOVATIVE AND CREATIVE INFORMATION TECHNOLOGY (ICITECH), 2017,
  • [23] Vision-based gesture recognition system for human-computer interaction
    Trigueiros, Paulo
    Ribeiro, Fernando
    Reis, Luis Paulo
    COMPUTATIONAL VISION AND MEDICAL IMAGE PROCESSING IV, 2014, : 137 - 142
  • [24] Vision-Based System for Human Detection and Tracking in Indoor Environment
    Benezeth, Y.
    Emile, B.
    Laurent, H.
    Rosenberger, C.
    INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2010, 2 (01) : 41 - 52
  • [25] Vision-Based UAV Detection and Localization to Indoor Positioning System
    Choutri, Kheireddine
    Lagha, Mohand
    Meshoul, Souham
    Shaiba, Hadil
    Chegrani, Akram
    Yahiaoui, Mohamed
    SENSORS, 2024, 24 (13)
  • [26] Vision-Based System for Human Detection and Tracking in Indoor Environment
    Y. Benezeth
    B. Emile
    H. Laurent
    C. Rosenberger
    International Journal of Social Robotics, 2010, 2 : 41 - 52
  • [27] CORRIDOR DETECTION AND TRACKING FOR VISION-BASED DRIVER ASSISTANCE SYSTEM
    Jiang, Ruyi
    Klette, Reinhard
    Vaudrey, Tobi
    Wang, Shigang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2011, 25 (02) : 253 - 272
  • [28] A Vision-Based Collision Warning System by Surrounding Vehicles Detection
    Wu, Bing-Fei
    Chen, Ying-Han
    Kao, Chih-Chun
    Li, Yen-Feng
    Chen, Chao-Jung
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2012, 6 (04): : 1203 - 1222
  • [29] Computer Vision-based Detection Method for Steel Bridge Bolt-looseness
    Lao W.
    Xu W.
    Zhang Q.
    Luo C.
    Cui C.
    Chen J.
    Tiedao Xuebao/Journal of the China Railway Society, 2024, 46 (01): : 91 - 102
  • [30] Computer vision-based cascade detection of peeling and cracking in masonry house walls
    Zhang, Chun
    Lin, Shuai
    Yu, Jian
    Zhang, Tongbo
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2024,