VC-dimensions of nondeterministic finite automata for words of equal length

被引:0
|
作者
Bjørn Kjos-Hanssen
Clyde James Felix
Sun Young Kim
Ethan Lamb
Davin Takahashi
机构
[1] University of Hawai’i at Mānoa,Department of Mathematics
来源
Annals of Mathematics and Artificial Intelligence | 2022年 / 90卷
关键词
Vapnik-Chervonenkis dimension; Testing dimension; Finite automata; Nondeterminism; State complexity; 68Q45; 68Q68; 68T05;
D O I
暂无
中图分类号
学科分类号
摘要
Let NFAb(q) denote the set of languages accepted by nondeterministic finite automata with q states over an alphabet with b letters. Let Bn denote the set of words of length n. We give a quadratic lower bound on the VC dimension of NFA2(q)∩Bn={L∩Bn∣L∈NFA2(q)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \text{NFA}_{2}(q)\cap B_{n} = \{L\cap B_{n} \mid L \in \text{NFA}_{2}(q)\} $$\end{document} as a function of q. Next, the work of Gruber and Holzer (Theoret. Comput. Sci. 387(2): 155–166, 2007) gives an upper bound for the nondeterministic state complexity of finite languages contained in Bn, which we strengthen using our methods. Finally, we give some theoretical and experimental results on the dependence on n of the VC dimension and testing dimension of NFA2(q) ∩ Bn.
引用
收藏
页码:93 / 105
页数:12
相关论文
empty
未找到相关数据