Let NFAb(q) denote the set of languages accepted by nondeterministic finite automata with q states over an alphabet with b letters. Let Bn denote the set of words of length n. We give a quadratic lower bound on the VC dimension of
NFA2(q)∩Bn={L∩Bn∣L∈NFA2(q)}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \text{NFA}_{2}(q)\cap B_{n} = \{L\cap B_{n} \mid L \in \text{NFA}_{2}(q)\} $$\end{document} as a function of q. Next, the work of Gruber and Holzer (Theoret. Comput. Sci. 387(2): 155–166, 2007) gives an upper bound for the nondeterministic state complexity of finite languages contained in Bn, which we strengthen using our methods. Finally, we give some theoretical and experimental results on the dependence on n of the VC dimension and testing dimension of NFA2(q) ∩ Bn.
机构:
Ulyanovsk (Simbirsk) Branch, Moscow University, Ulyanovsk State University
Department of Mathematics and Computer Science, Togliatti State University, Togliatti, Samarskaya obi., 445667, Belorusskaya str.Ulyanovsk (Simbirsk) Branch, Moscow University, Ulyanovsk State University