A note on computational formulas for the Drazin inverse of certain block matrices

被引:8
作者
Bu, Changjiang [1 ]
Feng, Chengcheng [1 ]
Dong, Pengfei [1 ]
机构
[1] Dept. of Applied Math., College of Science, Harbin Engineering University
关键词
Block matrix; Drazin inverse; Generalized Schur complement;
D O I
10.1007/s12190-011-0501-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give a computational formula for the Drazin inverse of the sum P+Q, then applying it we give some computational formulas for the Drazin inverse of block matrix [InlineEquation not available: see fulltext.] (A and D are square) with generalized Schur complement S=D-CA D B is nonsingular under some conditions. These results extend the results about the Drazin inverse of M given by R. Hartwig, X. Li and Y. Wei (SIAM J. Matrix Anal. Appl. 27:757-771, 2006) and by C. Deng (J. Math. Anal. Appl. 368:1-8, 2010). © 2011 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:631 / 640
页数:9
相关论文
共 19 条
[1]  
Drazin M.P., Pseudoinverse in associative rings and semigroups, Am. Math. Mon., 65, pp. 506-514, (1958)
[2]  
Meyer C.D., Rose N.J., The index and the Drazin inverse of block triangular matrices, SIAM J. Appl. Math., 33, pp. 1-7, (1977)
[3]  
Campbell S.L., Meyer C.D., Generalized Inverse of Linear Transformations, (1979)
[4]  
Campbell S.L., The Drazin inverse and systems of second order linear differential equations, Linear Multilinear Algebra, 14, pp. 195-198, (1983)
[5]  
Cui X., Wei Y., Zhang N., Quotient convergence and multi-splitting methods for solving singular linear equations, Calcolo, 44, pp. 21-31, (2007)
[6]  
Hanke M., Iterative consistency: A concept for the solution of singular linear systems, SIAM J. Matrix Anal. Appl., 15, pp. 569-577, (1994)
[7]  
Hartwig R.E., Levine J., Applications of the Drazin inverse to Hill cryptographic systems: Part III, Cryptologia, 5, pp. 67-77, (1981)
[8]  
Meyer C.D., The condition number of a finite Markov chains and perturbation bounds for the limiting probabilities, SIAM J. Algebr. Discrete Methods, 1, pp. 273-283, (1980)
[9]  
Meyer C.D., Shoaf J.M., Updating finite Markov chains by using techniques of group inversion, J. Stat. Comput. Simul., 11, pp. 163-181, (1980)
[10]  
Wei Y., Li X., Bu F., A perturbation bound of the Drazin inverse of a matrix by separation of simple invariant subspaces, SIAM J. Matrix Anal. Appl., 27, pp. 72-81, (2005)