Nonsingular decaying vacuum cosmology and entropy production

被引:0
作者
J. A. S. Lima
Spyros Basilakos
Joan Solà
机构
[1] Universidade de São Paulo,Departamento de Astronomia
[2] Academy of Athens,Research Center for Astronomy and Applied Mathematics
[3] Univ. de Barcelona,High Energy Physics Group, Dept. d’Estructura i Constituents de la Matèria, Institut de Ciències del Cosmos (ICC)
来源
General Relativity and Gravitation | 2015年 / 47卷
关键词
Cosmology; Theory; Early universe;
D O I
暂无
中图分类号
学科分类号
摘要
The thermodynamic behavior of a decaying vacuum cosmology describing the entire cosmological history evolving between two extreme (early and late time) de Sitter eras is investigated. The thermal evolution from the early de Sitter to the radiation phase is discussed in detail. The temperature evolution law and the increasing entropy function are analytically determined. The entropy of the effectively massless particles is initially zero but evolves continuously to the present day maximum value within the current Hubble radius, S0∼1088\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0 \sim 10^{88}$$\end{document} in natural units. By using the Gibbons–Hawking temperature relation for the de Sitter spacetime, it is found that the ratio between the primeval and the late time vacuum energy densities is ρvI/ρv0∼10123\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho _{vI}/\rho _{v0} \sim 10^{123}$$\end{document}, as required by some naive estimates from quantum field theory.
引用
收藏
相关论文
共 90 条
[1]  
Basilakos S(2009)undefined MNRAS 395 234-undefined
[2]  
Basilakos S(2009)undefined A&A 508 575-undefined
[3]  
Basilakos S(2013)undefined Int. J. Mod. Phys. D 22 1342008-undefined
[4]  
Lima JAS(2014)undefined Int. J. Mod. Phys. D 23 1442011-undefined
[5]  
Solà J(2009)undefined Phys. Rev. D 80 3511-undefined
[6]  
Basilakos S(2012)undefined Phys. Rev. D 80 3511-undefined
[7]  
Lima JAS(2014)undefined Phys. Rev. D 90 023008-undefined
[8]  
Solà J(1995)undefined Phys. Rev. Lett. 75 3218-undefined
[9]  
Basilakos S(2005)undefined Int. J. Mod. Phys. A 20 2465-undefined
[10]  
Plionis M(1992)undefined Phys. Rev. D 46 2404-undefined