The ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{G'}{G})$\end{document} -expansion method and its applications to some nonlinear evolution equations in the mathematical physics

被引:0
作者
E. M. E. Zayed
机构
[1] Zagazig University,Mathematics Department, Faculty of Science
[2] Taif University,Mathematics Department, Faculty of Science
关键词
The ( ; -expansion method; Traveling wave solutions; The Painlevé integrable Burgers equations; The Nizhnik-Novikov-Vesselov equations; The Boiti-Leon-Pempinelli equations; The dispersive long wave equations; 35K99; 35P05; 35P99;
D O I
10.1007/s12190-008-0159-8
中图分类号
学科分类号
摘要
In the present paper, we construct the traveling wave solutions involving parameters for some nonlinear evolution equations in the mathematical physics via the (2+1)-dimensional Painlevé integrable Burgers equations, the (2+1)-dimensional Nizhnik-Novikov-Vesselov equations, the (2+1)-dimensional Boiti-Leon-Pempinelli equations and the (2+1)-dimensional dispersive long wave equations by using a new approach, namely the ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{G'}{G})$\end{document} -expansion method, where G=G(ξ) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the solitary waves are derived from the traveling waves. The traveling wave solutions are expressed by hyperbolic, trigonometric and rational functions.
引用
收藏
页码:89 / 103
页数:14
相关论文
共 83 条
[1]  
Abdou M.A.(2007)The extended tanh-method and its applications for solving nonlinear physical models Appl. Math. Comput. 190 988-996
[2]  
Abdou M.A.(2007)The extended F-expansion method and its applications for a class of nonlinear evolution equation Chaos Solitons Fractals 31 95-104
[3]  
Bekir A.(2008)Application of the ( Phys. Lett. A 372 3400-3406
[4]  
Bekir A.(2008) -expansion method for nonlinear evolution equations Phys. Lett. A 372 1619-1625
[5]  
Boz A.(1987)Exact solutions for nonlinear evolution equations using Exp-function method Inverse Probl. 3 371-387
[6]  
Boiti M.(2005)Spectral transform for a two spatial dimension extension of the dispersive long wave equation Chaos Solitons Fractals 24 745-757
[7]  
Leon J.(2000)Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation Phys. Lett. A 277 212-218
[8]  
Pempinelli P.(2006)Extended tanh-function method and its applications to nonlinear equations Chaos Solitons Fractals 30 700-708
[9]  
Chen Y.(2003)Exp-function method for nonlinear wave equations Commun. Theor. Phys. 39 393-394
[10]  
Wang Q.(2004)Painlevé analysis and some solutions of (2+1)-dimensional generalized Burgers equations Chaos Solitons Fractals 22 243-247