Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery

被引:0
|
作者
Huan Meng
Qing Ran
Tian-Yi Dai
Hang Shi
Shu-Pei Zeng
Yong-Fu Zhu
Zi Wen
Wei Zhang
Xing-You Lang
Wei-Tao Zheng
Qing Jiang
机构
[1] Jilin University,Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center
[2] Jilin University,State Key Laboratory of Automotive Simulation and Control
来源
Nano-Micro Letters | 2022年 / 14卷
关键词
Nanoporous metal; Zinc-based alloy anode; Aqueous zinc-ion batteries; Surface alloying;
D O I
暂无
中图分类号
学科分类号
摘要
ZnxCuy alloy shell was in-situ formed on self-supported three-dimensional nanoporous Zn anode by anionic surfactant-assisted surface alloying of Zn and Cu.The self-supported nanoporous ZnxCuy/Zn anodes exhibit high-rate capability, outstanding reversibility and stability during Zn stripping/plating because of zincophilic ZnxCuy to guide uniform Zn deposition and facilitate Zn stripping.Aqueous Zn-ion batteries assembled with nanoporous ZnxCuy/Zn anode and KzMnO2 cathode achieve specific energy of as high as ~430 Wh kg‒1 and retain ~86% after long-term cycles for >700 h.
引用
收藏
相关论文
共 50 条
  • [1] Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery
    Meng, Huan
    Ran, Qing
    Dai, Tian-Yi
    Shi, Hang
    Zeng, Shu-Pei
    Zhu, Yong-Fu
    Wen, Zi
    Zhang, Wei
    Lang, Xing-You
    Zheng, Wei-Tao
    Jiang, Qing
    NANO-MICRO LETTERS, 2022, 14 (01)
  • [2] Highly Reversible Zinc Anode Achieved by Surface Polyimide Coating for High-Performance Aqueous Zinc-Ion Batteries
    Wang, Lang
    Wang, Xinyu
    Song, Binxin
    Wang, Zhe
    Wan, Fang
    ENERGY TECHNOLOGY, 2023, 11 (02)
  • [3] Effect of Surface Treatment of Stainless Steel Foils in High-Performance Aqueous Zinc-Ion Battery
    Li, Chao
    Cai, Kunpeng
    Liang, LiHeng
    Dong, Jianxia
    Liu, Xuhui
    Cao, Ning
    Shao, Qingguo
    Zang, Xiaobei
    ENERGY TECHNOLOGY, 2022, 10 (06)
  • [4] Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode
    Binghong She
    Lutong Shan
    Huijie Chen
    Jiang Zhou
    Xun Guo
    Guozhao Fang
    Xinxin Cao
    Shuquan Liang
    Journal of Energy Chemistry , 2019, (10) : 172 - 175
  • [5] Investigation of sodium vanadate as a high-performance aqueous zinc-ion battery cathode
    She, Binghong
    Shan, Lutong
    Chen, Huijie
    Zhou, Jiang
    Gun, Xun
    Fang, Guozhao
    Cao, Xinxin
    Liang, Shuquan
    JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 172 - 175
  • [6] Integrated solution for a stable and high-performance zinc-ion battery using an electrolyte additive
    Yoo, Geun
    Lee, Young-Geun
    Im, Byoungyong
    Kim, Dae Guen
    Jo, Yong-Ryun
    An, Geon-Hyoung
    ENERGY STORAGE MATERIALS, 2023, 61
  • [7] Cobalt ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode
    Yao, Song
    Sun, Yangang
    Pan, Luyao
    MATERIALS LETTERS, 2024, 369
  • [8] Sodium ion stabilized ammonium vanadate as a high-performance aqueous zinc-ion battery cathode
    Wang, Xuri
    Naveed, Ahmad
    Zeng, Tianyi
    Wan, Tao
    Zhang, Hanwei
    Zhou, Yu
    Dou, Aichun
    Su, Mingru
    Liu, Yunjian
    Chu, Dewei
    CHEMICAL ENGINEERING JOURNAL, 2022, 446
  • [9] Ultra-Stable Aqueous Zinc Anodes: Enabling High-Performance Zinc-Ion Batteries via a ZnSiF6-Derived Protective Interphase
    Huang, Yongfeng
    Guo, Rongsheng
    Li, Zejian
    Zhang, Jiajia
    Liu, Wenbao
    Kang, Feiyu
    ADVANCED SCIENCE, 2024, 11 (44)
  • [10] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)