String tensions in deformed Yang-Mills theory

被引:0
作者
Erich Poppitz
M. Erfan Shalchian T.
机构
[1] University of Toronto,Department of Physics
来源
Journal of High Energy Physics | / 2018卷
关键词
Wilson; ’t Hooft and Polyakov loops; Confinement; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on ℝ3×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{R}}^3\times {\mathbb{S}}^1 $$\end{document}. Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken ℤN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{Z}}_N $$\end{document} center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a “baryon vertex” exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.
引用
收藏
相关论文
共 97 条
[1]  
Ünsal M(2009)Magnetic bion condensation: a new mechanism of confinement and mass gap in four dimensions Phys. Rev. D 80 245-undefined
[2]  
Ünsal M(2008)Center-stabilized Yang-Mills theory: confinement and large-N volume independence Phys. Rev. D 78 429-undefined
[3]  
Yaffe LG(2016)New nonperturbative methods in quantum field theory: from large-N orbifold equivalence to bions and resurgence Ann. Rev. Nucl. Part. Sci. 66 125008-undefined
[4]  
Dunne GV(1977)Quark confinement and topology of gauge groups Nucl. Phys. B 120 1934-undefined
[5]  
Ünsal M(2016)Emergent dimensions and branes from large-N confinement Phys. Rev. D 94 271-undefined
[6]  
Polyakov AM(1976)String-like solutions of the bag model Phys. Rev. D 13 105012-undefined
[7]  
Cherman A(1995) SU( Nucl. Phys. B 447 091-undefined
[8]  
Poppitz E(2015) ) Phys. Rev. D 92 102-undefined
[9]  
Johnson K(2016)Strings from domain walls in supersymmetric Yang-Mills theory and adjoint QCD Phys. Rev. Lett. 117 048-undefined
[10]  
Thorn CB(2017)Chiral Lagrangian from duality and monopole operators in compactified QCD Phys. Rev. D 96 133-undefined