New congruences involving products of two binomial coefficients

被引:0
作者
Guo-Shuai Mao
Zhi-Wei Sun
机构
[1] Nanjing University,Department of Mathematics
来源
The Ramanujan Journal | 2019年 / 49卷
关键词
Central binomial coefficients; Congruences; Legendre symbol; Primary 11B65; 11B68; Secondary 05A10; 11A07;
D O I
暂无
中图分类号
学科分类号
摘要
Let p>3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>3$$\end{document} be a prime and let a be a positive integer. We show that if [inline-graphic not available: see fulltext] or a>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>1$$\end{document}, then [graphic not available: see fulltext]with (-)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-)$$\end{document} the Jacobi symbol, which confirms a conjecture of Z.-W. Sun. We also establish the following new congruences: [graphic not available: see fulltext]
引用
收藏
页码:237 / 256
页数:19
相关论文
共 17 条
[1]  
Lehmer E(1938)On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson Ann. Math. 39 350-360
[2]  
Mortenson E(2003)A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function J. Number Theory 99 139-147
[3]  
Mortenson E(2005)Supercongruences for truncated Proc. Am. Math. Soc. 133 321-330
[4]  
Pan H(2006) hypergeometric series with applications to certain weight three newforms Discret. Math. 306 1921-1940
[5]  
Sun Z-W(2014)A combinatorial identity with application to Catalan numbers Sci. China Math. 57 2091-2102
[6]  
Pan H(2016)Proof of three conjectures on congruences Int. J. Number Theory 12 1259-1271
[7]  
Sun Z-W(1995)Super congruences involving Bernoulli polynomials Proc. Am. Math. Soc. 123 1341-1346
[8]  
Sun Z-H(2010)A congruence for primes Sci. China Math. 53 2473-2488
[9]  
Sun Z-W(2011)Binomial coefficients, Catalan numbers and Lucas quotients Sci. China Math. 54 2509-2535
[10]  
Sun Z-W(2013)Super congruences and Euler numbers Finite Fields Appl. 22 24-44