共 66 条
[1]
Brest J(2006)Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems IEEE Trans Evolut Comput 10 646-657
[2]
Greiner S(2018)Classification of osteoporosis by artificial neural network based on monarch butterfly optimization algorithm Healthc Technol Lett 5 70-464
[3]
Boskovic B(2018)Improved monarch butterfly optimization for unconstrained global search and neural network training Appl Intell 48 445-16
[4]
Mernik M(2016)Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation Memet Comput 10 1-644
[5]
Zumer V(2017)Opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem Comput Electr Eng 67 454-665
[6]
Devikanniga D(2009)A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization J Heuristics 15 617-471
[7]
Faris H(1989)Genetic alogorithms in search optimization & machine learning Mach Learn 32 95-295
[8]
Aljarah I(2010)DE/BBO: a hybrid differential evolution with biogeography-based optimization for global numerical optimization Soft Comput 15 645-279
[9]
Mirjalili S(2007)A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm J Global Optim 39 459-713
[10]
Feng Y(2006)Comprehensive learning particle swarm optimizer for global optimization of multimodal functions IEEE Trans Evolut Comput 10 281-157