Quantum codes from Hermitian dual-containing constacyclic codes over Fq2+vFq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q^{2}}+{v}{\mathbb {F}}_{q^{2}}$$\end{document}

被引:0
作者
Yu Wang
Xiaoshan Kai
Zhonghua Sun
Shixin Zhu
机构
[1] Hefei University,School of Artificial Intelligence and Big Data
[2] Hefei University of Technology,School of Mathematics
关键词
Quantum codes; Constacyclic codes; Hermitian dual-containing; Gray map;
D O I
10.1007/s11128-021-03052-w
中图分类号
学科分类号
摘要
Let R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} be the finite non-chain ring Fq2+vFq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{{ q}^{2}}+{v}{\mathbb {F}}_{{ q}^{2}}$$\end{document}, where v2=v\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${v}^{2}={v}$$\end{document} and q is an odd prime power. In this paper, we study quantum codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{{ q}}$$\end{document} from constacyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}. We define a class of Gray maps, which preserves the Hermitian dual-containing property of linear codes from R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} to Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{{ q}^{2}}$$\end{document}. We study α(1-2v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\alpha }(1-2v)$$\end{document}-constacyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}, and show that the images of α(1-2v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (1-2v)$$\end{document}-constacyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document} under the special Gray map are α2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^{2}$$\end{document}-constacyclic codes over Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{{ q}^{2}}$$\end{document}. Some new non-binary quantum codes are obtained via the Gray map and the Hermitian construction from Hermitian dual-containing α(1-2v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (1-2v)$$\end{document}-constacyclic codes over R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}$$\end{document}.
引用
收藏
相关论文
共 83 条
[1]  
Ashikhmin A(2001)Nonbinary quantum stabilizer codes IEEE Trans. Inf. Theory 47 3065-3072
[2]  
Knill E(2014)Quantum codes from cyclic codes over Int. J. Quantum Inf. 12 1450042-144
[3]  
Ashraf M(2015)Construction of quantum codes from cyclic codes over Int. J. Inf. Coding Theory 3 137-4098
[4]  
Mohammad G(2016)Quantum codes from cyclic codes over Quantum Inf. Process. 15 4089-335
[5]  
Ashraf M(2019)Quantum codes over from cyclic codes over Cryptogr. Commun. 11 325-1387
[6]  
Mohammad G(1998)Quantum error correction via codes over GF(4) IEEE Trans. Inf. Theory 44 1369-1484
[7]  
Ashraf M(2015)Application of constacyclic codes to quantum MDS codes IEEE Trans. Inf. Theory 61 1474-1138
[8]  
Mohammad G(2015)On quantum codes obtained from cyclic codes over Int. J. Quantum Inf. 13 1550031-295
[9]  
Ashraf M(2019)Quantum codes from constacyclic codes over polynomial residue rings Chin. J. Electron. 28 1131-686
[10]  
Mohammad G(2015)Quantum codes from cyclic codes over Int. J. Quantum Inf. 13 1550063-174