A difference-of-convex functions approach for sparse PDE optimal control problems with nonconvex costs

被引:1
作者
Pedro Merino
机构
[1] Escuela Politécnica Nacional,Research Center of Mathematical Modeling (MODEMAT) and Department of Mathematics
来源
Computational Optimization and Applications | 2019年 / 74卷
关键词
Optimal control; Nonconvex; DC programming; DCA; Elliptic PDE; 90C26; 90C46; 49J20; 49K20;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a local regularization of elliptic optimal control problems which involves the nonconvex Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document} quasi-norm penalization in the cost function. The proposed Huber type regularization allows us to formulate the PDE constrained optimization instance as a DC programming problem (difference of convex functions) that is useful to obtain necessary optimality conditions and tackle its numerical solution by applying the well known DC algorithm used in nonconvex optimization problems. By this procedure we approximate the original problem in terms of a consistent family of parameterized nonsmooth problems for which there are efficient numerical methods available. Finally, we present numerical experiments to illustrate our theory with different configurations associated to the parameters of the problem.
引用
收藏
页码:225 / 258
页数:33
相关论文
共 24 条
  • [1] Auchmuty G(1989)Duality algorithms for nonconvex variational principles Numer. Func. Anal. Optim. 10 211-264
  • [2] Auchmuty G(1983)Duality for non-convex variational principles J. Differ. Equ. 50 80-145
  • [3] Casas E(2013)Parabolic control problems in measure spaces with sparse solutions SIAM J. Control Optim. 51 28-63
  • [4] Clason C(2016)Parabolic control problems in space-time measure spaces ESAIM Control Optim. Calc. Var. 22 355-370
  • [5] Kunisch K(2017)A review on sparse solutions in optimal control of partial differential equations SeMA J. 74 319-344
  • [6] Casas E(2017)Finite element approximation of sparse parabolic control problems Am. Inst. Math. Sci. 7 393-417
  • [7] Kunisch K(2013)Linear and nonlinear functional analysis with applications SIAM 130 472-258
  • [8] Casas E(2017)Second-order orthan–based methods with enriched hessian information for sparse Comput. Optim. Appl. 67 225-586
  • [9] Casas E(2001)-optimization J. Optim. Theory Appl. 108 571-1415
  • [10] Mateos M(2013)Simplified optimality conditions for minimizing the difference of vector-valued functions SIAM J. Imaging Sci. 6 1385-1275