Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [41] Commutative rings and zero-divisor semigroups of regular polyhedrons
    Tang, Gaohua
    Su, Huadong
    Wei, Yangjiang
    RING THEORY 2007, PROCEEDINGS, 2009, : 200 - 209
  • [42] On Domination of Zero-divisor Graphs of Matrix Rings
    Jafari, Sayyed Heidar
    Rad, Nader Jafari
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (02): : 271 - 275
  • [43] On the genus of extended zero-divisor graph of commutative rings
    Rehman, Nadeem Ur
    Nazim, Mohd
    Selvakumar, K.
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (07) : 3541 - 3550
  • [44] Zero-divisor graphs and zero-divisor functors
    Sbarra, Enrico
    Zanardo, Maurizio
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023,
  • [45] Characterizations of zero-divisor graphs of certain rings
    Zhao, Ruju
    Wei, Junchao
    FILOMAT, 2023, 37 (24) : 8229 - 8236
  • [46] RECOVERING RINGS FROM ZERO-DIVISOR GRAPHS
    Redmond, Shane P.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (08)
  • [47] Finite Rings with Acyclic Zero-Divisor Graphs
    Monastyre, Anna S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2024, 21 (01): : 405 - 416
  • [48] Complemented zero-divisor graphs and Boolean rings
    LaGrange, John D.
    JOURNAL OF ALGEBRA, 2007, 315 (02) : 600 - 611
  • [49] On directed zero-divisor graphs of finite rings
    Wu, TS
    DISCRETE MATHEMATICS, 2005, 296 (01) : 73 - 86
  • [50] Zero-Divisor Graphs of Rings and Their Hermitian Matrices
    Lu Lu
    Lihua Feng
    Weijun Liu
    Guihai Yu
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46