Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [21] ON THE ZERO-DIVISOR GRAPHS OF COMMUTATIVE SEMIGROUPS
    Maimani, Hamid Reza
    Yassemi, Siamak
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (03): : 733 - 740
  • [22] Computing forgotten topological index of zero-divisor graphs of commutative rings
    Gursoy, Arif
    Kircali Gursoy, Necla
    Ulker, Alper
    TURKISH JOURNAL OF MATHEMATICS, 2021,
  • [23] INVARIANTS AND ISOMORPHISM THEOREMS FOR ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS OF QUOTIENTS
    Lagrange, John D.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (03) : 407 - 438
  • [24] Some Graph Parameters of the Zero-divisor Graphs of Finite Commutative Rings
    Movahedi, F.
    Akhbari, M. H.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (03)
  • [25] Distances in zero-divisor and total graphs from commutative rings A survey
    Chelvam, T. Tamizh
    Asir, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2016, 13 (03) : 290 - 298
  • [26] COMMUTATIVE RINGS WHOSE ZERO-DIVISOR GRAPHS HAVE POSITIVE GENUS
    Aliniaeifard, F.
    Behboodi, M.
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (10) : 3629 - 3634
  • [27] CUT-SETS IN ZERO-DIVISOR GRAPHS OF FINITE COMMUTATIVE RINGS
    Cote, B.
    Ewing, C.
    Huhn, M.
    Plaut, C. M.
    Weber, D.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (08) : 2849 - 2861
  • [28] Analysis of Zagreb indices over zero-divisor graphs of commutative rings
    Aykac, Sumeyye
    Akgunes, Nihat
    Cevik, Ahmet Sinan
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (06)
  • [29] Computing forgotten topological index of zero-divisor graphs of commutative rings
    Gursoy, Arif
    Gursoy, Necla Kircali
    Ulker, Alper
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1845 - 1863
  • [30] ZERO-DIVISOR GRAPHS OF ORE EXTENSION RINGS
    Afkhami, M.
    Khashyarmanesh, K.
    Khorsandi, M. R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) : 1309 - 1317