Toroidal zero-divisor graphs of decomposable commutative rings without identity

被引:0
|
作者
G. Kalaimurugan
P. Vignesh
T. Tamizh Chelvam
机构
[1] Thiruvalluvar University,Department of Mathematics
[2] Manonmaniam Sundaranar University,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2020年 / 26卷
关键词
Commutative rings; Nilpotent rings; Decomposable rings; Zero-divisor graph; Genus; 05C10; 05C25; 13M05;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a commutative ring without identity. The zero-divisor graph of R,  denoted by Γ(R),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varGamma (R),$$\end{document} is a graph with vertex set Z(R)\{0},\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z(R){{\setminus }} \{0\},$$\end{document} which is the set of all non-zero zero-divisor elements of R and two vertices x and y are adjacent if and only if xy=0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy=0.$$\end{document} In this paper, we characterize (up to isomorphism) all finite decomposable commutative rings without identity whose zero-divisor graphs are toroidal.
引用
收藏
页码:807 / 829
页数:22
相关论文
共 50 条
  • [1] Toroidal zero-divisor graphs of decomposable commutative rings without identity
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 807 - 829
  • [2] On zero-divisor graphs of commutative rings without identity
    Kalaimurugan, G.
    Vignesh, P.
    Chelvam, T. Tamizh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (12)
  • [3] PLANAR INDEX AND OUTERPLANAR INDEX OF ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS WITHOUT IDENTITY
    Kalaimurugan, G.
    Vignesh, P.
    Afkhami, M.
    Barati, Z.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 33 : 18 - 33
  • [4] Zero-Divisor Graphs of Matrices Over Commutative Rings
    Bozic, Ivana
    Petrovic, Zoran
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (04) : 1186 - 1192
  • [5] On domination numbers of zero-divisor graphs of commutative rings
    Anderson, Sarah E.
    Axtell, Michael C.
    Kroschel, Brenda K.
    Stickles, Joe A.
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2024, 12 (02) : 169 - 180
  • [6] Sombor index of zero-divisor graphs of commutative rings
    Gursoy, Arif
    Ulker, Alper
    Kircali Gursoy, Necla
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 231 - 257
  • [7] CUT STRUCTURES IN ZERO-DIVISOR GRAPHS OF COMMUTATIVE RINGS
    Axtell, M.
    Baeth, N.
    Stickles, J.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2016, 8 (02) : 143 - 171
  • [8] On zero-divisor graphs of small finite commutative rings
    Redmond, Shane P.
    DISCRETE MATHEMATICS, 2007, 307 (9-10) : 1155 - 1166
  • [9] Zero-divisor graphs of polynomials and power series over commutative rings
    Axtell, M
    Coykendall, J
    Stickles, J
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (06) : 2043 - 2050
  • [10] Realization of zero-divisor graphs of finite commutative rings as threshold graphs
    Raja, Rameez
    Wagay, Samir Ahmad
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02) : 567 - 576