The nonconforming virtual element method for fourth-order singular perturbation problem

被引:0
作者
Bei Zhang
Jikun Zhao
Shaochun Chen
机构
[1] Henan University of Technology,College of Science
[2] Zhengzhou University,School of Mathematics and Statistics
来源
Advances in Computational Mathematics | 2020年 / 46卷
关键词
Nonconforming virtual element; Fourth-order singular perturbation problem; Polygonal mesh; 65N30; 65N12;
D O I
暂无
中图分类号
学科分类号
摘要
We present the nonconforming virtual element method for the fourth-order singular perturbation problem. The virtual element proposed in this paper is a variant of the C0-continuous nonconforming virtual element presented in our previous work and allows to compute two different projection operators that are used for the construction of the discrete scheme. We show the optimal convergence in the energy norm for the nonconforming virtual element method. Further, the lowest order nonconforming method is proved to be uniformly convergent with respect to the perturbation parameter. Finally, we verify the convergence for the nonconforming virtual element method by some numerical tests.
引用
收藏
相关论文
共 96 条
  • [1] Ahmad B(2013)Equivalent projectors for virtual element methods Comput. Math. Appl. 66 376-391
  • [2] Alsaedi A(2018)The fully nonconforming virtual element method for biharmonic problems Math. Models Methods Appl. Sci. 28 387-407
  • [3] Brezzi F(2016)The nonconforming virtual element method ESAIM Math. Model. Numer. Anal. 50 879-904
  • [4] Marini LD(2013)Basic principles of virtual element methods Math. Models Methods Appl. Sci. 23 199-214
  • [5] Russo A(2018)SUPG stabilization for the nonconforming virtual element method for advection-diffusion-reaction equations Comput. Method. Appl. M. 340 500-529
  • [6] Antonietti PF(2011)A C0 interior penalty method for a fourth order elliptic singular perturbation problem SIAM J. Numer. Anal. 49 869-892
  • [7] Manzini G(2017)Some estimates for virtual element methods Comput. Meth. Appl. Mat. 17 553-574
  • [8] Verani M(2013)Virtual element methods for plate bending problems Comput. Method. Appl. M. 253 455-462
  • [9] Ayuso de Dios B(2016)The nonconforming virtual element method for the Stokes equations SIAM J. Numer. Anal. 54 3411-3435
  • [10] Lipnikov K(2017)Conforming and nonconforming virtual element methods for elliptic problems IMA J. Numer. Anal. 37 1317-1354