The Yamabe problem on stratified spaces

被引:0
作者
Kazuo Akutagawa
Gilles Carron
Rafe Mazzeo
机构
[1] Tokyo Institute of Technology,
[2] Université de Nantes,undefined
[3] Stanford University,undefined
来源
Geometric and Functional Analysis | 2014年 / 24卷
关键词
Scalar Curvature; Heat Kernel; Sobolev Inequality; Conic Singularity; Tubular Neighbourhood;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce new invariants of a Riemannian singular space, the local Yamabe and Sobolev constants, and then go on to prove a general version of the Yamabe theorem under that the global Yamabe invariant of the space is strictly less than one or the other of these local invariants. This rests on a small number of structural assumptions about the space and of the behavior of the scalar curvature function on its smooth locus. The second half of this paper shows how this result applies in the category of smoothly stratified pseudomanifolds, and we also prove sharp regularity for the solutions on these spaces. This sharpens and generalizes the results of Akutagawa and Botvinnik (GAFA 13:259–333, 2003) on the Yamabe problem on spaces with isolated conic singularities.
引用
收藏
页码:1039 / 1079
页数:40
相关论文
共 25 条
[1]  
Akutagawa K.(2012)Computations of the orbifold Yamabe invariant Mathematische Zeitschrift, 271 611-625
[2]  
Akutagawa K.(2003)Yamabe metrics on cylindrical manifolds GAFA, 13 259-333
[3]  
Botvinnik B.(2013)Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds Calculus of Variations and Partial Differential Equations, 48 67-88
[4]  
Akutagawa K.(2012)The signature package on Witt spaces Annales de l’ENS, 45 241-310
[5]  
Kumura H.(2013)Smooth Yamabe invariant and surgery Journal of Differential Geometry, 94 1-58
[6]  
Albin P.(2013)The conformal Yamabe constant of product manifolds Proceedings of the American Mathematical Society, 141 295-307
[7]  
Leichtnam E.(2006)Moser iteration for (quasi)minimizers on metric spaces Manuscripta Mathematica, 121 339-366
[8]  
Mazzeo R.(1983)Spectral geometry of singular Riemannian spaces Journal of Differential Geometry, 18 575-657
[9]  
Piazza P.(1984)Conformal deformation of a Riemannian metric to constant scalar curvature Journal of Differential Geometry, 20 479-495
[10]  
Ammann B.(1988)Conformally flat manifolds, Kleinian groups and scalar curvature Inventiones mathematicae, 92 47-71