On Hermitian positive definite solutions of a nonlinear matrix equation

被引:0
作者
Mohsen Masoudi
Abbas Salemi
机构
[1] University of Guilan,Faculty of Mathematical Sciences
[2] Shahid Bahonar University of Kerman,Department of Applied Mathematics & Mahani Mathematical Research Center
来源
Journal of Fixed Point Theory and Applications | 2021年 / 23卷
关键词
Nonlinear matrix equation; positive definite solution; fixed point theorem; iterative algorithm; 15A24; 15B48; 47H10; 65F30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the Hermitian positive definite solutions of the matrix equation Xs+A∗X-tA=Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^s +A^* X^{ - t}A = Q$$\end{document}, where A is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} nonsingular complex matrix, Q is an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \times n$$\end{document} Hermitian positive definite matrix and s,t>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s, t> 0$$\end{document}, are discussed. Some conditions for the existence of Hermitian positive definite solutions of this equation are derived. In addition, two iterative methods to obtaining the maximum or minimum Hermitian positive definite solutions of this equation are proposed. In addition, a necessary and sufficient condition for the existence of these solutions is presented. Theoretical results are illustrated by some numerical examples.
引用
收藏
相关论文
共 62 条
[1]  
Anderson W(1983)Ladder networks, fixpoints, and the geometric mean Circ. Syst. Signal Process. 2 259-268
[2]  
Morley T(1980)Limit of cascade iteration of matrices Numer. Funct. Anal. Optim. 21 579-589
[3]  
Trapp G(2003)Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems SIAM J. Matrix Anal. Appl. 24 603-626
[4]  
Ando T(2009)Some investigation on Hermitian positive definite solutions of the matrix equation Linear Algebra Appl. 430 2448-2456
[5]  
Bai ZZ(2010)On the Hermitian positive definite solutions of nonlinear matrix equation Appl. Math. Comput. 217 117-123
[6]  
Golub GH(2008)On the existence of Hermitian positive definite solutions of the matrix equation Linear Algebra Appl. 429 673-687
[7]  
Ng MK(2009)On the nonlinear matrix equation Math. Comput. Model. 49 936-945
[8]  
Cai J(2004)On positive definite solutions of the nonlinear matrix equation Appl. Math. Comput. 151 533-541
[9]  
Chen G(2005)Iterative methods for nonlinear matrix equations Linear Algebra Appl. 403 45-52
[10]  
Cai J(1993)On the existence of a positive definite solution of the matrix equation Linear Algebra Appl. 194 91-108