Gorenstein-projective modules over Tm,n(A)

被引:0
作者
Xiuhua Luo
Pu Zhang
机构
[1] Shanghai Jiaotong University,Department of Mathematics
来源
Chinese Annals of Mathematics, Series B | 2011年 / 32卷
关键词
Gorenstein algebra; Gorenstein-projective module; 17B40; 17B50;
D O I
暂无
中图分类号
学科分类号
摘要
A new class of Gorenstein algebras Tm,n(A) is introduced, their module categories are described, and all the Gorenstein-projective Tm,n(A)-modules are explicitly determined.
引用
收藏
页码:201 / 208
页数:7
相关论文
共 50 条
[41]   Characterizing When the Category of Gorenstein Projective Modules is an Abelian Category [J].
Fan Kong .
Algebras and Representation Theory, 2014, 17 :1289-1301
[42]   Characterizing When the Category of Gorenstein Projective Modules is an Abelian Category [J].
Kong, Fan .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (04) :1289-1301
[43]   On Modules M such that both M and M∗ are Semi-Gorenstein-Projective [J].
Claus Michael Ringel ;
Pu Zhang .
Algebras and Representation Theory, 2021, 24 :1125-1140
[44]   Gorenstein projective and injective dimensions over Frobenius extensions [J].
Ren, Wei .
COMMUNICATIONS IN ALGEBRA, 2018, 46 (12) :5348-5354
[45]   Derived representation type and Gorenstein projective modules of an algebra under crossed product [J].
Li Fang ;
Sun LongGang .
SCIENCE CHINA-MATHEMATICS, 2013, 56 (03) :531-540
[46]   Derived representation type and Gorenstein projective modules of an algebra under crossed product [J].
Fang Li ;
LongGang Sun .
Science China Mathematics, 2013, 56 :531-540
[47]   Derived representation type and Gorenstein projective modules of an algebra under crossed product [J].
LI Fang ;
SUN LongGang .
ScienceChina(Mathematics), 2013, 56 (03) :531-540
[48]   (STRONGLY) GORENSTEIN FLAT MODULES OVER GROUP RINGS [J].
Bahlekeh, Abdolnaser .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 90 (01) :57-64
[49]   GORENSTEIN MODULES AND DUALIZING MODULES [J].
Li, Yunxia .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) :5399-5412
[50]   Cartan-Eilenberg Gorenstein projective N-complexes [J].
Lu, Bo .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (09) :3810-3824