Scattering for the focusing energy-subcritical nonlinear Schrödinger equation

被引:0
|
作者
DaoYuan Fang
Jian Xie
Thierry Cazenave
机构
[1] Zhejiang University,Department of Mathematics
[2] Hangzhou Normal University,Department of Mathematics
[3] Université Pierre et Marie Curie & CNRS,Laboratoire Jacques
来源
Science China Mathematics | 2011年 / 54卷
关键词
nonlinear Schrödinger equation; scattering; mass-supercritical and energy-subcritical; 35Q55; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
For the 3D focusing cubic nonlinear Schrödinger equation, scattering of H1 solutions inside the (scale invariant) potential well was established by Holmer and Roudenko (radial case) and Duyckaerts et al. (general case) in 2008. In this paper, we extend this result to arbitrary space dimensions and focusing, mass-supercritical and energy-subcritical power nonlinearities, by adapting the method of Duyckaerts et al.
引用
收藏
页码:2037 / 2062
页数:25
相关论文
共 50 条
  • [21] Scattering for Nonlinear Schrödinger Equation Under Partial Harmonic Confinement
    Paolo Antonelli
    Rémi Carles
    Jorge Drumond Silva
    Communications in Mathematical Physics, 2015, 334 : 367 - 396
  • [22] Modified scattering for a dispersion-managed nonlinear Schrödinger equation
    Jason Murphy
    Tim Van Hoose
    Nonlinear Differential Equations and Applications NoDEA, 2022, 29
  • [23] Inverse scattering transform for a nonlocal derivative nonlinear Schrödinger equation
    Xinxin Ma
    Yonghui Kuang
    Theoretical and Mathematical Physics, 2022, 210 : 31 - 45
  • [24] Numerical inverse scattering transform for the derivative nonlinear Schrödinger equation
    Cui, Shikun
    Wang, Zhen
    NONLINEARITY, 2024, 37 (10)
  • [25] On inverse scattering for the two-dimensional nonlinear Schrödinger equation
    Sasaki, Hironobu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 401 : 308 - 333
  • [26] Scattering and blow up for nonlinear Schrödinger equation with the averaged nonlinearity
    Kawakami, Jumpei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [27] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [28] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [29] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [30] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70