Dimensional Crossover in the Bose–Einstein Condensation Confined to Anisotropic Three-Dimensional Lattices

被引:0
|
作者
K. K. Witkowski
T. K. Kopeć
机构
[1] University of Wrocław,Faculty of Physics and Astronomy
[2] Polish Academy of Sciences,Institute of Low Temperature and Structure Research
来源
Journal of Low Temperature Physics | 2020年 / 201卷
关键词
Bose–Einstein condensation; Dimensional crossover; Lattice anisotropy; Thermodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
The Bose–Einstein condensation (BEC) in three-dimensional (3D) anisotropic lattices is studied. We present theoretical results for the critical temperature for BEC, chemical potential, condensate fraction and relevant thermodynamic quantities like: internal energy, entropy, specific heat and compressibility as a function of anisotropy parameter being the ratio of the nearest-neighbor in-plane (t‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\parallel$$\end{document}) and out-of-plane (t⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\perp$$\end{document}) hopping amplitudes. In particular, considered scenarios include weakly coupled two-dimensional (2D) planes (t⊥/t‖≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\perp /t_\parallel \ll 1$$\end{document}, relevant for layered structures) as well as a rod-like geometry of interacting one-dimensional (1D) chains (t‖/t⊥≪1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\parallel /t_\perp \ll 1$$\end{document}). The impact of the dimensional crossover as the system is tuned away from a set of disconnected 2D layers, or traverses from a set of separate 1D chains to a regime where a fully isotropic 3D structure emerges is elucidated. Both numerical and analytic approaches are employed, (the latter in a form of series expansions involving t‖,t⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_\parallel ,t_\perp$$\end{document} amplitudes) for internal energy, entropy, specific heat and isothermal compressibility. The theoretical outcome of the present study may be of interest to a number of scenarios in solid-state physics, where the relevant quasi-particles are bosonic-like, as well as might be applicable to the physics of cold bosons loaded in artificially engineered 3D optical lattices.
引用
收藏
页码:340 / 372
页数:32
相关论文
共 50 条
  • [1] Dimensional Crossover in the Bose-Einstein Condensation Confined to Anisotropic Three-Dimensional Lattices
    Witkowski, K. K.
    Kopec, T. K.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 201 (3-4) : 340 - 372
  • [2] Dimensional crossover of Bose-Einstein condensation of atomic gases in anisotropic harmonic traps
    Tan, Chengtai
    Wang, Qi
    Du, Xuerui
    Ma, Yongli
    ANNALS OF PHYSICS, 2022, 440
  • [3] Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap
    Yuan Du-Qi
    ACTA PHYSICA SINICA, 2014, 63 (17)
  • [4] Vortex dynamics of a three-dimensional dipolar Bose-Einstein condensate
    Wang, Yuansheng
    CANADIAN JOURNAL OF PHYSICS, 2024, 102 (01) : 30 - 35
  • [5] DIMENSIONAL CROSSOVER AND DIMENSIONAL EFFECTS IN QUASI-TWO-DIMENSIONAL BOSE GASES
    Hu, Ying
    Liang, Zhaoxin
    MODERN PHYSICS LETTERS B, 2013, 27 (14):
  • [6] Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas
    Sykes, A. G.
    Corson, J. P.
    D'Incao, J. P.
    Koller, A. P.
    Greene, C. H.
    Rey, A. M.
    Hazzard, K. R. A.
    Bohn, J. L.
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [7] Critical points of a three-dimensional harmonically trapped Bose gas
    Hassan, Ahmed S.
    El-Badry, Azza M.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (14-15) : 1947 - 1950
  • [8] Dimensional crossover of a Rabi-coupled two-component Bose–Einstein condensate in an optical lattice
    Kangkang Li
    Zhaoxin Liang
    CommunicationsinTheoreticalPhysics, 2023, 75 (01) : 147 - 153
  • [9] Carnot Cycles in a Harmonically Confined Ultracold Gas across Bose-Einstein Condensation
    Reyes-Ayala, Ignacio
    Miotti, Marcos
    Hemmerling, Michal
    Dubessy, Romain
    Perrin, Helene
    Romero-Rochin, Victor
    Bagnato, Vanderlei Salvador
    ENTROPY, 2023, 25 (02)
  • [10] Dimensional crossover of a Rabi-coupled two-component Bose-Einstein condensate in an optical lattice
    Li, Kangkang
    Liang, Zhaoxin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (01)