Regularized Trace for Sturm–Liouville Differential Operator on a Star-Shaped Graph

被引:0
作者
Chuan-Fu Yang
机构
[1] Nanjing University of Science and Technology,Department of Applied Mathematics
来源
Complex Analysis and Operator Theory | 2013年 / 7卷
关键词
Sturm–Liouville operator; Star-shaped graph; Kirchhoff-type condition; Eigenvalue asymptotics; Trace formula; 34B24; 34L20; 47E05;
D O I
暂无
中图分类号
学科分类号
摘要
The sum of the eigenvalues {λn} of an operator is usually called its trace. For the eigenvalues λn of an differential operator, the series \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sum_n \lambda_n}$$\end{document} , generally speaking, diverges; however, it can be regularized by subtracting from λn the first terms of the asymptotic expansion, which interfere with the convergence of the series. The sum of such a regularized series is called the trace. In this work, we consider the spectral problem for Sturm–Liouville differential operator on d-star-type graph with a Kirchhoff-type condition in the internal vertex, where the integer d ≥ 2. Regularized trace formula of this operator is established with residue techniques in complex analysis.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 21 条
  • [1] Currie S.(2008)Green’s functions and regularized traces of Sturm–Liouville operators on graphs Proc. Edinb. Math. Soc. Ser. 2 51 315-335
  • [2] Watson B.A.(1953)On a formula for eigenvalues of a differential operator of second order Dokl. Akad. Nauk SSSR 88 593-596
  • [3] Gelfand I.M.(1978)On the trace formulas for Sturm–Liouville operator Vestnik MGU ser. mat-mek. 1 40-49
  • [4] Levitan B.M.(1960)A generalization of the trace concept Duke Math. J. 27 607-618
  • [5] Guseynov G.S.(1994)Trace formulas for the Schrödinger operator Commun. Pure Appl. Math. 47 503-512
  • [6] Levitan B.M.(1967)The regularized sum of roots of complete functions belonging to a class Funks. analizi ego pril. 1 52-59
  • [7] Halberg C.J.(2007)Trace formulas for the Sturm–Liouville operator with regular boundary conditions Dokl. Math. 76 702-707
  • [8] Kramer V.A.(2000)Inverse problem for the Sturm–Liouville equation on a simple graph SIAM J. Math. Anal. 32 801-819
  • [9] Lax P.D.(2007)Inverse problem for the Sturm–Liouville equation on a star-shaped graph Math. Nachrichten 280 1595-1619
  • [10] Lidskiy V.B.(2001)Trace formula for Sturm–Liouville operators with singular potentials Math. Notes 69 387-400