Spectral Invariance of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Representations of Twisted Convolution Algebras with Applications in Gabor Analysis

被引:0
作者
Are Austad
机构
[1] Norwegian University of Science and Technology,Department of Mathematical Sciences
关键词
Spectral invariance; Convolution algebras; -uniqueness; Gabor analysis; 46H15; 22D15; 22D20; 43A20; 43A70;
D O I
10.1007/s00041-021-09860-z
中图分类号
学科分类号
摘要
We show spectral invariance for faithful ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-representations for a class of twisted convolution algebras. More precisely, if G is a locally compact group with a continuous 2-cocycle c for which the corresponding Mackey group Gc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_c$$\end{document} is C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-unique and symmetric, then the twisted convolution algebra L1(G,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1 (G,c)$$\end{document} is spectrally invariant in B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}({\mathcal {H}})$$\end{document} for any faithful ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-representation of L1(G,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1 (G,c)$$\end{document} as bounded operators on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. As an application of this result we give a proof of the statement that if Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is a closed cocompact subgroup of the phase space of a locally compact abelian group G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document}, and if g is some function in the Feichtinger algebra S0(G′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0 (G')$$\end{document} that generates a Gabor frame for L2(G′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 (G')$$\end{document} over Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, then both the canonical dual atom and the canonical tight atom associated to g are also in S0(G′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0 (G')$$\end{document}. We do this without the use of periodization techniques from Gabor analysis.
引用
收藏
相关论文
共 52 条
[11]  
Feichtinger HG(2003)Banach spaces related to integrable group representations and their atomic decompositions. I Math. Z. 245 791-821
[12]  
Gröchenig KH(1989)Banach spaces related to integrable group representations and their atomic decompositions. II Integral Equ. Oper. Theory 12 343-382
[13]  
Feichtinger HG(2006)Symmetry of weighted Rev. Math. Iberoam. 22 703-724
[14]  
Gröchenig KH(2010)-algebras and the GRS-condition Constr. Approx. 32 429-466
[15]  
Fendler G(2004)Weighted group algebras on groups of polynomial growth J. Am. Math. Soc. 17 1-18
[16]  
Gröchenig K(2007)The band method for positive and strictly contractive extension problems: an alternative version and new applications J. Reine Angew. Math. 613 121-146
[17]  
Leinert M(1972)Time-frequency analysis of Sjöstrand’s class Invent. Math. 17 135-142
[18]  
Fendler G(2018)Noncommutative approximation: inverse-closed subalgebras and off-diagonal decay of matrices J. Fourier Anal. Appl. 24 1579-1660
[19]  
Gröchenig K(2016)Wiener’s lemma for twisted convolution and Gabor frames J. Funct. Anal. 270 229-263
[20]  
Leinert M(2020)Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class J. Noncommut. Geom. 14 1445-1500