Spectral Invariance of ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-Representations of Twisted Convolution Algebras with Applications in Gabor Analysis

被引:0
作者
Are Austad
机构
[1] Norwegian University of Science and Technology,Department of Mathematical Sciences
关键词
Spectral invariance; Convolution algebras; -uniqueness; Gabor analysis; 46H15; 22D15; 22D20; 43A20; 43A70;
D O I
10.1007/s00041-021-09860-z
中图分类号
学科分类号
摘要
We show spectral invariance for faithful ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-representations for a class of twisted convolution algebras. More precisely, if G is a locally compact group with a continuous 2-cocycle c for which the corresponding Mackey group Gc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_c$$\end{document} is C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-unique and symmetric, then the twisted convolution algebra L1(G,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1 (G,c)$$\end{document} is spectrally invariant in B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {B}}({\mathcal {H}})$$\end{document} for any faithful ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-representation of L1(G,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1 (G,c)$$\end{document} as bounded operators on a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}. As an application of this result we give a proof of the statement that if Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document} is a closed cocompact subgroup of the phase space of a locally compact abelian group G′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G'$$\end{document}, and if g is some function in the Feichtinger algebra S0(G′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0 (G')$$\end{document} that generates a Gabor frame for L2(G′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2 (G')$$\end{document} over Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}, then both the canonical dual atom and the canonical tight atom associated to g are also in S0(G′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_0 (G')$$\end{document}. We do this without the use of periodization techniques from Gabor analysis.
引用
收藏
相关论文
共 52 条
  • [1] Ali ST(1993)Continuous frames in Hilbert space Ann. Phys. 222 1-37
  • [2] Antoine J-P(1990)When is the spectrum of a convolution operator on Proc. Edinb. Math. Soc. (2) 33 327-332
  • [3] Gazeau J-P(1990) independent of Funktsional. Anal. i Prilozhen. 24 64-65
  • [4] Barnes BA(2015)? Ann. Henri Poincaré 16 1283-1306
  • [5] Baskakov AG(1984)Wiener’s theorem and asymptotic estimates for elements of inverse matrices J. Funct. Anal. 56 220-232
  • [6] Beltiţă I(1996)Inverse-closed algebras of integral operators on locally compact groups Rocky Mt. J. Math. 26 1289-1312
  • [7] Beltiţă D(2020)Group algebras with a unique J. Math. Pures Appl. 9 143-176
  • [8] Boidol J(1989)-norm J. Funct. Anal. 86 307-340
  • [9] Christensen O(1989)Atomic decomposition via projective group representations Monatsh. Math. 108 129-148
  • [10] Enstad U(2006)The Balian-Low theorem for locally compact abelian groups and vector bundles Bull. Lond. Math. Soc. 38 625-635