Quasi-quantum groups obtained from tensor braided Hopf algebras

被引:0
|
作者
Daniel Bulacu
机构
[1] University of Bucharest,Faculty of Mathematics and Informatics
来源
Journal of Algebraic Combinatorics | 2020年 / 52卷
关键词
Braided category; Biproduct; Projection; Braided tensor Hopf algebra; Quantum shuffle quasi-Hopf algebra; 16T05; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a quasi-Hopf algebra, HHMHH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{{{\mathcal {M}}}}_H^H$$\end{document} the category of two-sided two-cosided Hopf modules over H and HHYD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{\mathcal YD}$$\end{document} the category of left Yetter–Drinfeld modules over H. We show that HHMHH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{{{\mathcal {M}}}}_H^H$$\end{document} admits a braided monoidal structure for which the strong monoidal equivalence HHMHH≅HHYD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{\mathcal M}_H^H\cong {}_H^H{\mathcal YD}$$\end{document} established by the structure theorem for quasi-Hopf bimodules becomes braided monoidal. Using this braided monoidal equivalence, we prove that Hopf algebras within HHMHH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{{{\mathcal {M}}}}_H^H$$\end{document} can be characterized as quasi-Hopf algebras with a projection or as biproduct quasi-Hopf algebras in the sense of Bulacu and Nauwelaerts (J Pure Appl Algebra 174:1–42, 2002) . A particular class of such (braided, quasi-) Hopf algebras is obtained from a tensor product Hopf algebra type construction. Our arguments rely on general categorical facts.
引用
收藏
页码:405 / 453
页数:48
相关论文
共 50 条
  • [21] Star-Products and Quasi-Quantum Groups
    M. Mansour
    International Journal of Theoretical Physics, 1998, 37 : 2995 - 3013
  • [22] QUASI-QUANTUM PLANES AND QUASI-QUANTUM GROUPS OF DIMENSION p3 AND p4
    Huang, Hua-Lin
    Yang, Yuping
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) : 4245 - 4260
  • [23] Braided Frobenius algebras from certain Hopf algebras
    Saito, Masahico
    Zappala, Emanuele
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (01)
  • [24] Star-products and quasi-quantum groups
    Mansour, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (12) : 2995 - 3013
  • [25] Finite quasi-quantum groups of diagonal type
    Huang, Hua-Lin
    Liu, Gongxiang
    Yang, Yuping
    Ye, Yu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 201 - 243
  • [26] Finite quasi-quantum groups of diagonal type
    Huang, Hua-Lin
    Liu, Gongxiang
    Yang, Yuping
    Ye, Yu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 201 - 243
  • [27] Braided cofree Hopf algebras and quantum multi-brace algebras
    Jian, Run-Qiang
    Rosso, Marc
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2012, 667 : 193 - 220
  • [28] From Quantum Quasi-Shuffle Algebras to Braided Rota–Baxter Algebras
    Run-Qiang Jian
    Letters in Mathematical Physics, 2013, 103 : 851 - 863
  • [29] Pointed Hopf Algebras—from Enveloping Algebras to Quantum Groups and Beyond
    David E. Radford
    Acta Applicandae Mathematicae, 2009, 108 : 141 - 155
  • [30] Quasi-Hopf algebras and the centre of a tensor category
    Panaite, F
    Van Oystaeyen, F
    HOPF ALGEBRAS AND QUANTUM GROUPS, PROCEEDINGS, 2000, 209 : 221 - 235