Quasi-quantum groups obtained from tensor braided Hopf algebras

被引:0
|
作者
Daniel Bulacu
机构
[1] University of Bucharest,Faculty of Mathematics and Informatics
来源
Journal of Algebraic Combinatorics | 2020年 / 52卷
关键词
Braided category; Biproduct; Projection; Braided tensor Hopf algebra; Quantum shuffle quasi-Hopf algebra; 16T05; 18D10;
D O I
暂无
中图分类号
学科分类号
摘要
Let H be a quasi-Hopf algebra, HHMHH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{{{\mathcal {M}}}}_H^H$$\end{document} the category of two-sided two-cosided Hopf modules over H and HHYD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{\mathcal YD}$$\end{document} the category of left Yetter–Drinfeld modules over H. We show that HHMHH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{{{\mathcal {M}}}}_H^H$$\end{document} admits a braided monoidal structure for which the strong monoidal equivalence HHMHH≅HHYD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{\mathcal M}_H^H\cong {}_H^H{\mathcal YD}$$\end{document} established by the structure theorem for quasi-Hopf bimodules becomes braided monoidal. Using this braided monoidal equivalence, we prove that Hopf algebras within HHMHH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_H^H{{{\mathcal {M}}}}_H^H$$\end{document} can be characterized as quasi-Hopf algebras with a projection or as biproduct quasi-Hopf algebras in the sense of Bulacu and Nauwelaerts (J Pure Appl Algebra 174:1–42, 2002) . A particular class of such (braided, quasi-) Hopf algebras is obtained from a tensor product Hopf algebra type construction. Our arguments rely on general categorical facts.
引用
收藏
页码:405 / 453
页数:48
相关论文
共 50 条
  • [1] Quasi-quantum groups obtained from tensor braided Hopf algebras
    Bulacu, Daniel
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (03) : 405 - 453
  • [2] Braided Hopf algebras obtained from coquasitriangular Hopf algebras
    Beattie, Margaret
    Bulacu, Daniel
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (01) : 115 - 160
  • [3] Braided Hopf Algebras Obtained from Coquasitriangular Hopf Algebras
    Margaret Beattie
    Daniel Bulacu
    Communications in Mathematical Physics, 2008, 282 : 115 - 160
  • [4] BRAIDED GROUPS OF HOPF-ALGEBRAS OBTAINED BY TWISTING
    GUREVICH, D
    MAJID, S
    PACIFIC JOURNAL OF MATHEMATICS, 1994, 162 (01) : 27 - 44
  • [5] Quivers, Quasi-Quantum Groups and Finite Tensor Categories
    Hua-Lin Huang
    Gongxiang Liu
    Yu Ye
    Communications in Mathematical Physics, 2011, 303 : 595 - 612
  • [6] Quivers, Quasi-Quantum Groups and Finite Tensor Categories
    Huang, Hua-Lin
    Liu, Gongxiang
    Ye, Yu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (03) : 595 - 612
  • [7] Quasi-quantum groups from strings
    Jureit, Jan-H
    Krajewski, Thomas
    INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [8] LIE GROUPS IN QUASI-POISSON GEOMETRY AND BRAIDED HOPF ALGEBRAS
    Severa, Pavol
    Valach, Fridrich
    DOCUMENTA MATHEMATICA, 2017, 22 : 953 - 972
  • [9] Doubles of quasi-quantum groups
    Hausser, F
    Nill, F
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 199 (03) : 547 - 589
  • [10] Quantum symmetric algebras as braided hopf algebras
    de Chela, DF
    Algebraic Structures and Their Representations, 2005, 376 : 261 - 271