Modified Clopper-Pearson Confidence Interval for Binomial Proportion

被引:0
作者
Desale Habtzghi
Chand K. Midha
Ashish Das
机构
[1] The University of Akron,
[2] Indian Institute of Technology Bombay,undefined
来源
Journal of Statistical Theory and Applications | 2014年 / 13卷 / 4期
关键词
Binomial proportion; Expected coverage probability; Coverage probability; Exact confidence interval; Logistic model; Primary 62F30; Secondary 62F03, 62G10, 62N03;
D O I
10.2991/jsta.2014.13.4.3
中图分类号
学科分类号
摘要
We introduce expected coverage probability as a measure for constructing confidence intervals for the binomial proportion, π. We propose a model based confidence interval for π using the expected coverage probabilities of the Clopper-Pearson interval. The method provides intervals comparable or better than the alternative intervals, such as the Wilson, Agresti-Coull and Jeffreys intervals.
引用
收藏
页码:296 / 310
页数:14
相关论文
共 20 条
[1]  
Agresti A(1998)B. A., Approximate is better than “exact” for interval estimation of binomial proportions The American Statistician 52 119-126
[2]  
Couli B A(1983)Binomial confidence intervals Journal of the American Statistical Association 78 108-116
[3]  
Blyth C R(1934)The use of confidence or fiducial limits illustrated in the case of the binomial Biometrika 26 404-413
[4]  
Still H A(1927)Probable inference, the law of succession, and statistical inference Journal of the American Statistical Association 22 209-212
[5]  
Clopper C J(2001)Interval estimation for a binomial proportion Statistical Science 16 101-117
[6]  
Pearson E S(2002)Confidence intervals for a binomial proportion and asymptotic expansions The Annals of Statistics 30 160-201
[7]  
Wilson E B(1996)A Comparison of Approximate Interval Estimators for the Bernoulli Parameter The American Statistician 50 63-68
[8]  
Brown L D(1997)A Look at the Rule of Three The American Statistician 51 137-139
[9]  
Cai T T(1935)On the problem of confidence limits The Annals of Mathematical Statistics 6 111-116
[10]  
DasGupta A(2003)Dealing with discreteness: making ‘exact’ confidence intervals for proportions, differences of proportions, and odds ratios more exact Statistical Methods in Medical Research 12 3-21