On the renormalization group fixed point of the two-dimensional Ising model at criticality

被引:0
|
作者
Alexander Stottmeister
Tobias J. Osborne
机构
[1] Institut für Theoretische Physik,
[2] Leibniz Universität Hannover,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the renormalization group fixed point of the two-dimensional Ising model at criticality. In contrast with expectations from tensor network renormalization (TNR), we show that a simple, explicit analytic description of this fixed point using operator-algebraic renormalization (OAR) is possible. Specifically, the fixed point is characterized in terms of spin-spin correlation functions. Explicit error bounds for the approximation of continuum correlation functions are given.
引用
收藏
相关论文
共 50 条
  • [41] Pseudogap opening in the two-dimensional Hubbard model: A functional renormalization group analysis
    Hille, Cornelia
    Rohe, Daniel
    Honerkamp, Carsten
    Andergassen, Sabine
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [42] Corner transfer matrix renormalization group analysis of the two-dimensional dodecahedron model
    Ueda, Hiroshi
    Okunishi, Kouichi
    Yunoki, Seiji
    Nishino, Tomotoshi
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [44] Domain walls for two-dimensional renormalization group flows
    Gaiotto, Davide
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (12):
  • [45] Renormalization group of a two-dimensional patched Fermi surface
    Ferraz, A
    MODERN PHYSICS LETTERS B, 2003, 17 (04): : 167 - 174
  • [46] Strong disorder fixed points in the two-dimensional random-bond Ising model
    Picco, M.
    Honecker, A.
    Pujol, P.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [47] Domain walls for two-dimensional renormalization group flows
    Davide Gaiotto
    Journal of High Energy Physics, 2012
  • [48] RENORMALIZATION GROUP SOLUTION OF 1-DIMENSIONAL ISING-MODEL
    NAUENBERG, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) : 703 - 705
  • [49] RENORMALIZATION GROUP APPROACH FOR 2 DIMENSIONAL RANDOM ISING-MODEL
    GREST, GS
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (07): : 1329 - 1336
  • [50] Criticality of the random field Ising model in and out of equilibrium: A nonperturbative functional renormalization group description
    Balog, Ivan
    Tarjus, Gilles
    Tissier, Matthieu
    PHYSICAL REVIEW B, 2018, 97 (09)