On the renormalization group fixed point of the two-dimensional Ising model at criticality

被引:0
|
作者
Alexander Stottmeister
Tobias J. Osborne
机构
[1] Institut für Theoretische Physik,
[2] Leibniz Universität Hannover,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the renormalization group fixed point of the two-dimensional Ising model at criticality. In contrast with expectations from tensor network renormalization (TNR), we show that a simple, explicit analytic description of this fixed point using operator-algebraic renormalization (OAR) is possible. Specifically, the fixed point is characterized in terms of spin-spin correlation functions. Explicit error bounds for the approximation of continuum correlation functions are given.
引用
收藏
相关论文
共 50 条
  • [1] On the renormalization group fixed point of the two-dimensional Ising model at criticality
    Stottmeister, Alexander
    Osborne, Tobias J.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] DOMAIN WALL RENORMALIZATION GROUP ANALYSIS OF TWO-DIMENSIONAL ISING MODEL
    Aoki, Ken-Ichi
    Kobayashi, Tamao
    Tomita, Hiroshi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (18): : 3537 - 3549
  • [3] Universal amplitude ratios of the renormalization group: Two-dimensional tricritical Ising model
    Fioravanti, D
    Mussardo, G
    Simon, P
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [4] Renormalization group study of the two-dimensional random transverse-field Ising model
    Kovacs, Istvan A.
    Igloi, Ferenc
    PHYSICAL REVIEW B, 2010, 82 (05):
  • [5] Criticality in the two-dimensional random-bond Ising model
    Cho, S
    Fisher, MPA
    PHYSICAL REVIEW B, 1997, 55 (02): : 1025 - 1031
  • [6] Functional renormalization group approach to the Ising-nematic quantum critical point of two-dimensional metals
    Drukier, Casper
    Bartosch, Lorenz
    Isidori, Aldo
    Kopietz, Peter
    PHYSICAL REVIEW B, 2012, 85 (24)
  • [7] Renormalization group in the theory of two-dimensional turbulence: Instability of the fixed point with respect to weak anisotropy
    Antonov, NV
    Runov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 112 (03) : 1131 - 1139
  • [8] Renormalization group in the theory of two-dimensional turbulence: Instability of the fixed point with respect to weak anisotropy
    N. V. Antonov
    A. V. Runov
    Theoretical and Mathematical Physics, 1997, 112 : 1131 - 1139
  • [9] Study on the two-dimensional kinetic Ising model with the dynamic Monte Carlo renormalization group method
    Meng, Qing-Kuan
    Feng, Dong-Tai
    Sun, Yu-Ping
    Zhou, Ai-Ping
    Tan, Shu-Gang
    Sun, Yan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 517 : 114 - 120
  • [10] Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model
    Zhong, F
    PHYSICAL REVIEW B, 2002, 66 (06) : 1 - 4