“The Sierpinski gasket minus its bottom line” as a tree of Sierpinski gaskets

被引:0
作者
J. Kigami
K. Takahashi
机构
[1] Kyoto University,Graduate School of Informatics
[2] Zenkyoren,undefined
来源
Mathematische Zeitschrift | 2024年 / 306卷
关键词
Sierpinski gasket; Shortest path metric; Trace; Jump kernel; Primary 31E05; 31C25; Secondary 28A80; 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
The Sierpinski gasket K has three line segments constituting a regular triangle as its border. This paper studies what will happen if one of them, which is called the bottom line and is denoted by I, is removed from K. At a glance, “the Sierpinski gasket minus the bottom line” K\I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\backslash I$$\end{document} has a structure of a tree of Sierpinski gaskets. This observation leads us to the results showing that the boundary of K\I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\backslash I$$\end{document} is not the line segment I but a Cantor set from viewpoints of geometry and analysis. As a by-product, we have an explicit expression of the jump kernel of the trace of the Brownian motion of K on the bottom line I.
引用
收藏
相关论文
共 50 条
  • [41] Fractal differential equations on the Sierpinski gasket
    Kyallee Dalrymple
    Robert S. Strichartz
    Jade P. Vinson
    Journal of Fourier Analysis and Applications, 1999, 5 : 203 - 284
  • [42] The "hot spots" conjecture for the Sierpinski gasket
    Ruan, Huo-Jun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) : 469 - 476
  • [43] Harmonic mappings of the Sierpinski gasket to the circle
    Strichartz, RS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) : 805 - 817
  • [44] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Qingxuan Jiang
    Tian Lan
    Kasso A. Okoudjou
    Robert S. Strichartz
    Shashank Sule
    Sreeram Venkat
    Xiaoduo Wang
    Journal of Fourier Analysis and Applications, 2021, 27
  • [45] On the fundamental group of the Sierpinski-gasket
    Akiyama, S.
    Dorfer, G.
    Thuswaldner, J. M.
    Winkler, R.
    TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (09) : 1655 - 1672
  • [46] Fractal interpolation function on products of the Sierpinski gaskets
    Prasad, S. A.
    Verma, S.
    CHAOS SOLITONS & FRACTALS, 2023, 166
  • [47] Multiple Solutions of Dirichlet Problems on the Sierpinski Gasket
    Brigitte E. Breckner
    Csaba Varga
    Journal of Optimization Theory and Applications, 2015, 167 : 842 - 861
  • [48] Restrictions of Laplacian Eigenfunctions to Edges in the Sierpinski Gasket
    Hua Qiu
    Haoran Tian
    Constructive Approximation, 2019, 50 : 243 - 269
  • [49] Partial differential equations on products of Sierpinski gaskets
    Bockelman, Brian
    Strichartz, Robert S.
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (03) : 1361 - 1375
  • [50] A TRACE THEOREM FOR SOBOLEV SPACES ON THE SIERPINSKI GASKET
    Cao, Shiping
    Li, Shuangping
    Strichartz, Robert S.
    Talwai, Prem
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3901 - 3916