“The Sierpinski gasket minus its bottom line” as a tree of Sierpinski gaskets

被引:0
|
作者
J. Kigami
K. Takahashi
机构
[1] Kyoto University,Graduate School of Informatics
[2] Zenkyoren,undefined
来源
Mathematische Zeitschrift | 2024年 / 306卷
关键词
Sierpinski gasket; Shortest path metric; Trace; Jump kernel; Primary 31E05; 31C25; Secondary 28A80; 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
The Sierpinski gasket K has three line segments constituting a regular triangle as its border. This paper studies what will happen if one of them, which is called the bottom line and is denoted by I, is removed from K. At a glance, “the Sierpinski gasket minus the bottom line” K\I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\backslash I$$\end{document} has a structure of a tree of Sierpinski gaskets. This observation leads us to the results showing that the boundary of K\I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\backslash I$$\end{document} is not the line segment I but a Cantor set from viewpoints of geometry and analysis. As a by-product, we have an explicit expression of the jump kernel of the trace of the Brownian motion of K on the bottom line I.
引用
收藏
相关论文
共 50 条
  • [21] Box dimension of harmonic functions on higher dimensional Sierpinski gasket and Sierpinski gasket with bilateral energy
    Gopalakrishnan, Harsha
    Prasad, Srijanani Anurag
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [23] On the packing measure of the Sierpinski gasket
    Llorente, Marta
    Eugenia Mera, M.
    Moran, Manuel
    NONLINEARITY, 2018, 31 (06) : 2571 - 2589
  • [24] Spanning forests on the Sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2008, 10 (02): : 55 - 76
  • [25] Extensions and their Minimizations on the Sierpinski Gasket
    Li, Pak-Hin
    Ryder, Nicholas
    Strichartz, Robert S.
    Ugurcan, Baris Evren
    POTENTIAL ANALYSIS, 2014, 41 (04) : 1167 - 1201
  • [26] Harmonic Sierpinski Gasket and Applications
    Guariglia, Emanuel
    ENTROPY, 2018, 20 (09)
  • [27] Fractal interpolation on the Sierpinski Gasket
    Celik, Derya
    Kocak, Sahin
    Ozdemir, Yunus
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 343 - 347
  • [28] Random walks on dual Sierpinski gaskets
    Shunqi Wu
    Zhongzhi Zhang
    Guanrong Chen
    The European Physical Journal B, 2011, 82 : 91 - 96
  • [29] Sobolev Orthogonal Polynomials on the Sierpinski Gasket
    Jiang, Qingxuan
    Lan, Tian
    Okoudjou, Kasso A.
    Strichartz, Robert S.
    Sule, Shashank
    Venkat, Sreeram
    Wang, Xiaoduo
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
  • [30] Fractal differential equations on the Sierpinski gasket
    Dalrymple, K
    Strichartz, RS
    Vinson, JP
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (2-3) : 203 - 284