“The Sierpinski gasket minus its bottom line” as a tree of Sierpinski gaskets

被引:0
|
作者
J. Kigami
K. Takahashi
机构
[1] Kyoto University,Graduate School of Informatics
[2] Zenkyoren,undefined
来源
Mathematische Zeitschrift | 2024年 / 306卷
关键词
Sierpinski gasket; Shortest path metric; Trace; Jump kernel; Primary 31E05; 31C25; Secondary 28A80; 60J45;
D O I
暂无
中图分类号
学科分类号
摘要
The Sierpinski gasket K has three line segments constituting a regular triangle as its border. This paper studies what will happen if one of them, which is called the bottom line and is denoted by I, is removed from K. At a glance, “the Sierpinski gasket minus the bottom line” K\I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\backslash I$$\end{document} has a structure of a tree of Sierpinski gaskets. This observation leads us to the results showing that the boundary of K\I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\backslash I$$\end{document} is not the line segment I but a Cantor set from viewpoints of geometry and analysis. As a by-product, we have an explicit expression of the jump kernel of the trace of the Brownian motion of K on the bottom line I.
引用
收藏
相关论文
共 50 条
  • [1] "The Sierpinski gasket minus its bottom line" as a tree of Sierpinski gaskets
    Kigami, J.
    Takahashi, K.
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (02)
  • [2] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [3] ECCENTRIC DISTANCE SUM OF SIERPINSKI GASKET AND SIERPINSKI NETWORK
    Chen, Jin
    He, Long
    Wang, Qin
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (02)
  • [4] AVERAGE GEODESIC DISTANCE OF SIERPINSKI GASKET AND SIERPINSKI NETWORKS
    Wang, Songjing
    Yu, Zhouyu
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
  • [5] Geodesic interpolation on Sierpinski gaskets
    Davis, Caitlin M.
    LeGare, Laura A.
    McCartan, Cory W.
    Rogers, Luke
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (02) : 117 - 152
  • [6] Resistance of random Sierpinski gaskets
    Fontaine, Daniel
    Smith, Thomas
    Teplyaev, Alexander
    QUANTUM GRAPHS AND THEIR APPLICATIONS, 2006, 415 : 121 - +
  • [7] Dimer coverings on the sierpinski gasket
    Chang, Shu-Chiuan
    Chen, Lung-Chi
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (04) : 631 - 650
  • [8] BOUNDED VARIATION ON THE SIERPINSKI GASKET
    Verma, S.
    Sahu, A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (07)
  • [9] Orthogonal Polynomials on the Sierpinski Gasket
    Kasso A. Okoudjou
    Robert S. Strichartz
    Elizabeth K. Tuley
    Constructive Approximation, 2013, 37 : 311 - 340
  • [10] Hausdorff measure of Sierpinski gasket
    周作领
    Science China Mathematics, 1997, (10) : 1016 - 1021