Degree bounded bottleneck spanning trees in three dimensions

被引:0
|
作者
Patrick J. Andersen
Charl J. Ras
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Minimum spanning trees; Bottleneck objective; Approximation algorithms; Discrete geometry; Bounded degree; Combinatorial optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum bottleneck spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. In this paper, we investigate the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.
引用
收藏
页码:457 / 491
页数:34
相关论文
共 50 条
  • [41] Spanning trees with minimum weighted degrees
    Ghodsi, Mohammad
    Mahini, Hamid
    Mirjalali, Kian
    Gharan, Shayan Oveis
    R., Amin S. Sayedi
    Zadimoghaddam, Morteza
    INFORMATION PROCESSING LETTERS, 2007, 104 (03) : 113 - 116
  • [42] Electrical flows over spanning trees
    Gupta, Swati
    Khodabakhsh, Ali
    Mortagy, Hassan
    Nikolova, Evdokia
    MATHEMATICAL PROGRAMMING, 2022, 196 (1-2) : 479 - 519
  • [43] Minimum restricted diameter spanning trees
    Hassin, R
    Levin, A
    DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 343 - 357
  • [44] Chain-constrained spanning trees
    Neil Olver
    Rico Zenklusen
    Mathematical Programming, 2018, 167 : 293 - 314
  • [45] Bottleneck Steiner tree with bounded number of Steiner vertices
    Abu-Affash, A. Karim
    Carmi, Paz
    Katz, Matthew J.
    JOURNAL OF DISCRETE ALGORITHMS, 2015, 30 : 96 - 100
  • [46] Approximating k-hop minimum spanning trees in Euclidean metrics
    Laue, Soeren
    Matijevic, Domagoj
    INFORMATION PROCESSING LETTERS, 2008, 107 (3-4) : 96 - 101
  • [47] Additive Approximation for Bounded Degree Survivable Network Design
    Lau, Lap Chi
    Singh, Mohit
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 759 - +
  • [48] On Minimum- and Maximum-Weight Minimum Spanning Trees with Neighborhoods
    Dorrigiv, Reza
    Fraser, Robert
    He, Meng
    Kamali, Shahin
    Kawamura, Akitoshi
    Lopez-Ortiz, Alejandro
    Seco, Diego
    THEORY OF COMPUTING SYSTEMS, 2015, 56 (01) : 220 - 250
  • [49] BALANCING MINIMUM SPANNING-TREES AND SHORTEST-PATH TREES
    KHULLER, S
    RAGHAVACHARI, B
    YOUNG, N
    ALGORITHMICA, 1995, 14 (04) : 305 - 321
  • [50] The non-uniform Bounded Degree Minimum Diameter Spanning Tree problem with an application in P2P networking
    Chawachat, Jakarin
    Fakcharoenphol, Jittat
    Jindaluang, Wattana
    INFORMATION PROCESSING LETTERS, 2012, 112 (24) : 937 - 941