Degree bounded bottleneck spanning trees in three dimensions

被引:0
|
作者
Patrick J. Andersen
Charl J. Ras
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Minimum spanning trees; Bottleneck objective; Approximation algorithms; Discrete geometry; Bounded degree; Combinatorial optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum bottleneck spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. In this paper, we investigate the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.
引用
收藏
页码:457 / 491
页数:34
相关论文
共 50 条
  • [21] Fractional Path Coloring in Bounded Degree Trees with Applications
    Caragiannis, I.
    Ferreira, A.
    Kaklamanis, C.
    Perennes, S.
    Rivano, H.
    ALGORITHMICA, 2010, 58 (02) : 516 - 540
  • [22] Fractional Path Coloring in Bounded Degree Trees with Applications
    I. Caragiannis
    A. Ferreira
    C. Kaklamanis
    S. Pérennes
    H. Rivano
    Algorithmica, 2010, 58 : 516 - 540
  • [23] Approximating the Degree-Bounded Minimum Diameter Spanning Tree Problem
    Jochen Könemann
    Asaf Levin
    Amitabh Sinha
    Algorithmica , 2005, 41 : 117 - 129
  • [24] Approximating the degree-bounded minimum diameter spanning tree problem
    Könemann, J
    Levin, A
    Sinha, A
    ALGORITHMICA, 2005, 41 (02) : 117 - 129
  • [25] A distributed approximation algorithm for the minimum degree minimum weight spanning trees
    Lavault, Christian
    Valencia-Pabon, Mario
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (02) : 200 - 208
  • [26] Using Bounded Diameter Minimum Spanning Trees to Build Dense Active Appearance Models
    Anderson, Robert
    Stenger, Bjoern
    Cipolla, Roberto
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 110 (01) : 48 - 57
  • [27] Using Bounded Diameter Minimum Spanning Trees to Build Dense Active Appearance Models
    Robert Anderson
    Björn Stenger
    Roberto Cipolla
    International Journal of Computer Vision, 2014, 110 : 48 - 57
  • [28] Approximation algorithms for constructing spanning K-trees using stock pieces of bounded length
    Lichen, Junran
    Li, Jianping
    Lih, Ko-Wei
    OPTIMIZATION LETTERS, 2017, 11 (08) : 1663 - 1675
  • [29] Approximation algorithms for constructing spanning K-trees using stock pieces of bounded length
    Junran Lichen
    Jianping Li
    Ko-Wei Lih
    Optimization Letters, 2017, 11 : 1663 - 1675
  • [30] Spanning Trees: A Survey
    Ozeki, Kenta
    Yamashita, Tomoki
    GRAPHS AND COMBINATORICS, 2011, 27 (01) : 1 - 26