Degree bounded bottleneck spanning trees in three dimensions

被引:0
|
作者
Patrick J. Andersen
Charl J. Ras
机构
[1] The University of Melbourne,School of Mathematics and Statistics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Minimum spanning trees; Bottleneck objective; Approximation algorithms; Discrete geometry; Bounded degree; Combinatorial optimisation;
D O I
暂无
中图分类号
学科分类号
摘要
The geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MST) is the problem of finding a minimum spanning tree for a set of points in a normed vector space, such that no vertex in the tree has a degree which exceeds δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and the sum of the lengths of the edges in the tree is minimum. The similarly defined geometric δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-minimum bottleneck spanning tree problem (δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST), is the problem of finding a degree bounded spanning tree such that the length of the longest edge is minimum. For point sets that lie in the Euclidean plane, both of these problems have been shown to be NP-hard for certain specific values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}. In this paper, we investigate the δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-MBST problem in 3-dimensional Euclidean space and 3-dimensional rectilinear space. We show that the problems are NP-hard for certain values of δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, and we provide inapproximability results for these cases. We also describe new approximation algorithms for solving these 3-dimensional variants, and then analyse their worst-case performance.
引用
收藏
页码:457 / 491
页数:34
相关论文
共 50 条
  • [11] Approximating Minimum Bounded Degree Spanning Trees to within One of Optimal
    Singh, Mohit
    Lau, Lap Chi
    JOURNAL OF THE ACM, 2015, 62 (01) : 1
  • [12] Bounded-degree minimum-radius spanning trees in wireless sensor networks
    An, Min Kyung
    Lam, Nhat X.
    Huynh, Dung T.
    Nguyen, Trac N.
    THEORETICAL COMPUTER SCIENCE, 2013, 498 : 46 - 57
  • [13] A matter of degree:: Improved approximation algorithms for degree-bounded minimum spanning trees
    Könemann, J
    Ravi, R
    SIAM JOURNAL ON COMPUTING, 2002, 31 (06) : 1783 - 1793
  • [14] A local search heuristic for bounded-degree minimum spanning trees
    Zahrani, M. S.
    Loomes, M. J.
    Malcolm, J. A.
    Albrecht, A. A.
    ENGINEERING OPTIMIZATION, 2008, 40 (12) : 1115 - 1135
  • [15] Approximating bounded-degree spanning trees and connected factors with leaves
    Kern, Walter
    Manthey, Bodo
    OPERATIONS RESEARCH LETTERS, 2017, 45 (02) : 115 - 118
  • [16] Resource Allocation in Bounded Degree Trees
    Reuven Bar-Yehuda
    Michael Beder
    Yuval Cohen
    Dror Rawitz
    Algorithmica, 2009, 54 : 89 - 106
  • [17] Resource Allocation in Bounded Degree Trees
    Bar-Yehuda, Reuven
    Beder, Michael
    Cohen, Yuval
    Rawitz, Dror
    ALGORITHMICA, 2009, 54 (01) : 89 - 106
  • [18] Low-degree spanning trees of small weight
    Khuller, S
    Raghavachari, B
    Young, N
    SIAM JOURNAL ON COMPUTING, 1996, 25 (02) : 355 - 368
  • [19] Wavelength assignment on bounded degree trees of rings
    Bian, ZB
    Gu, XP
    Zhou, X
    TENTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 2004, : 73 - 80
  • [20] Approximating average bounded-angle minimum spanning trees
    Biniaz, Ahmad
    Bose, Prosenjit
    Devaney, Patrick
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2025, 128