Limiting Spectral Distribution of Random k-Circulants

被引:0
|
作者
Arup Bose
Joydip Mitra
Arnab Sen
机构
[1] Indian Statistical Institute,Stat Math Unit
[2] Management Development Institute,Department of Statistics
[3] UC Berkeley,undefined
来源
关键词
Eigenvalue; Circulant; -circulant; Empirical spectral distribution; Limiting spectral distribution; Central limit theorem; Normal approximation; 60B20; 60B10; 60F05; 62E20; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
Consider random k-circulants Ak,n with n→∞,k=k(n) and whose input sequence {al}l≥0 is independent with mean zero and variance one and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup_{n}n^{-1}\sum_{l=1}^{n}\mathbb{E}|a_{l}|^{2+\delta}<\infty$\end{document} for some δ>0. Under suitable restrictions on the sequence {k(n)}n≥1, we show that the limiting spectral distribution (LSD) of the empirical distribution of suitably scaled eigenvalues exists, and we identify the limits. In particular, we prove the following: Suppose g≥1 is fixed and p1 is the smallest prime divisor of g. Suppose \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{g}=\prod_{j=1}^{g}E_{j}$\end{document} where {Ej}1≤j≤g are i.i.d. exponential random variables with mean one.
引用
收藏
页码:771 / 797
页数:26
相关论文
共 50 条
  • [31] On the limiting spectral density of random matrices filled with stochastic processes
    Loewe, Matthias
    Schubert, Kristina
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2019, 27 (02) : 89 - 105
  • [32] Unit Root Test in Panel Data Basing on the Limiting Spectral Distribution of Large-Dimensional Random Matrix
    Zhao Xiaofang
    Wang Cheng
    Miao Baiqi
    ADVANCES IN MANAGEMENT OF TECHNOLOGY, PT 1, 2010, : 458 - 466
  • [33] The spectral distribution of random mixed graphs
    Hu, Dan
    Li, Xueliang
    Liu, Xiaogang
    Zhang, Shenggui
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 343 - 365
  • [34] On the spectral distribution of Gaussian random matrices
    Delyon B.
    Yao J.
    Acta Mathematicae Applicatae Sinica, 2006, 22 (2) : 297 - 312
  • [35] The spectral distribution of random mixed graphs
    Hu, Dan
    Li, Xueliang
    Liu, Xiaogang
    Zhang, Shenggui
    Linear Algebra and Its Applications, 2017, 519 : 343 - 365
  • [36] On the Spectral Distribution of Gaussian Random Matrices
    B.Delyon J.Yao IRMAR
    Acta Mathematicae Applicatae Sinica(English Series), 2006, (02) : 297 - 312
  • [37] The Spectral Distribution of Random Mixed Graphs
    Guan, Yue
    Cheng, Bo
    Chen, Minfeng
    Liang, Meili
    Liu, Jianxi
    Wang, Jinxun
    Yang, Chao
    Zeng, Li
    AXIOMS, 2022, 11 (03)
  • [38] PARAMETER FREE LIMITING DISTRIBUTION FOR A RANDOM OPTIMIZATION ALGORITHM
    DOREA, CCY
    MIAZAKI, ES
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (03) : 391 - 399
  • [39] Limiting distribution for the maximal standardized increment of a random walk
    Kabluchko, Zakhar
    Wang, Yizao
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (09) : 2824 - 2867
  • [40] Limiting probability distribution for a random walk with topological constraints
    Koralov, L. B.
    Nechaev, S. K.
    Sinai, Ya G.
    CHAOS, 1991, 1 (02)