Limiting Spectral Distribution of Random k-Circulants

被引:0
|
作者
Arup Bose
Joydip Mitra
Arnab Sen
机构
[1] Indian Statistical Institute,Stat Math Unit
[2] Management Development Institute,Department of Statistics
[3] UC Berkeley,undefined
来源
关键词
Eigenvalue; Circulant; -circulant; Empirical spectral distribution; Limiting spectral distribution; Central limit theorem; Normal approximation; 60B20; 60B10; 60F05; 62E20; 62G32;
D O I
暂无
中图分类号
学科分类号
摘要
Consider random k-circulants Ak,n with n→∞,k=k(n) and whose input sequence {al}l≥0 is independent with mean zero and variance one and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sup_{n}n^{-1}\sum_{l=1}^{n}\mathbb{E}|a_{l}|^{2+\delta}<\infty$\end{document} for some δ>0. Under suitable restrictions on the sequence {k(n)}n≥1, we show that the limiting spectral distribution (LSD) of the empirical distribution of suitably scaled eigenvalues exists, and we identify the limits. In particular, we prove the following: Suppose g≥1 is fixed and p1 is the smallest prime divisor of g. Suppose \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P_{g}=\prod_{j=1}^{g}E_{j}$\end{document} where {Ej}1≤j≤g are i.i.d. exponential random variables with mean one.
引用
收藏
页码:771 / 797
页数:26
相关论文
共 50 条
  • [21] The limiting distribution of the trace of a random plane partition
    Kamenov, E. P.
    Mutafchien, L. R.
    ACTA MATHEMATICA HUNGARICA, 2007, 117 (04) : 293 - 314
  • [22] Limiting Probability Distribution of Random Sample Maximum
    Jana, Kahounova
    Jan, Vojtech
    APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMY: AMSE 2009, 2009, : 207 - 215
  • [23] Limiting empirical spectral distribution for the non-backtracking matrix of an Erdos-Renyi random graph
    Wang, Ke
    Wood, Philip Matchett
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 956 - 973
  • [24] Limiting distribution of decoherent quantum random walks
    Zhang, Kai
    PHYSICAL REVIEW A, 2008, 77 (06)
  • [25] The limiting distribution of the trace of a random plane partition
    E. P. Kamenov
    L. R. Mutafchiev
    Acta Mathematica Hungarica, 2007, 117 : 293 - 314
  • [26] LIMITING BEHAVIOR OF FUNCTIONALS OF THE SAMPLE SPECTRAL DISTRIBUTION
    KEENAN, DM
    ANNALS OF STATISTICS, 1983, 11 (04): : 1206 - 1217
  • [27] Limiting spectral distribution of sample autocovariance matrices
    Basak, Anirban
    Bose, Arup
    Sen, Sanchayan
    BERNOULLI, 2014, 20 (03) : 1234 - 1259
  • [28] Limiting spectral distribution of stochastic block model
    Su, Giap Van
    Chen, May-Ru
    Guo, Mei-Hui
    Huang, Hao-Wei
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (04)
  • [29] Limiting spectral distribution of X X′ matrices
    Bose, Arup
    Gangopadhyay, Sreela
    Senb, Arnab
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (03): : 677 - 707
  • [30] The limiting spectral distribution in terms of spectral density (vol 5, 2016)
    Peligrad, Costel
    Peligrad, Magda
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2018, 7 (01)