Maximal regularity for the Lamé system in certain classes of non-smooth domains

被引:0
作者
Marius Mitrea
Sylvie Monniaux
机构
[1] University of Missouri-Columbia,Department of Mathematics
[2] Université Aix-Marseille 3,LATP
来源
Journal of Evolution Equations | 2010年 / 10卷
关键词
Primary: 47D06; 35J50; Secondary: 47D03; 35J55; 49Q15; Lamé system; Non-smooth domain; Maximal regularity;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this article is twofold. On the one hand, we study the well-posedness of the Lamé system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${-\mu\Delta-\mu'\nabla{\rm div} }$$\end{document} in Lq(Ω), where Ω is an open subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{R}}^n}$$\end{document} satisfying mild regularity assumptions and the Lamé moduli μ, μ′ are such that μ > 0 and μ + μ′ > 0. On the other hand, we prove the analyticity of the semigroup generated by the Lamé operator as well as the maximal regularity property for the time-dependent Lamé system equipped with a homogeneous Dirichlet boundary condition based on off-diagonal estimates.
引用
收藏
页码:811 / 833
页数:22
相关论文
共 13 条
  • [1] Bernicot F.(2009)On maximal J. Funct. Anal. 256 2561-2586
  • [2] Zhao J.(1977)−regularity Bull. Amer. Math. Soc. 83 569-645
  • [3] Coifman R.(1992)Extensions of Hardy spaces and their use in analysis Duke Math. J. 65 333-343
  • [4] Weiss G.(1996)Real and complex interpolation and extrapolation of compact operators Potential Anal. 5 403-415
  • [5] Cwikel M.(1982)Sobolev spaces on an arbitrary metric space Adv. in Math. 46 80-147
  • [6] Hajlasz P.(1981)Boundary behavior of harmonic functions in nontangentially accessible domains Acta Math. 147 71-88
  • [7] Jerison D.(2008)Quasiconformal mappings and extendability of functions in Sobolev spaces J. Funct. Anal. 255 2732-2759
  • [8] Kenig C.(2009)On maximal regularity of type Trans. Amer. Math. Soc. 361 3125-3157
  • [9] Jones P.W.(1995)− J. Funct. Anal. 133 224-251
  • [10] Kunstmann P.C.(undefined) under minimal assumptions for elliptic non-divergence operators undefined undefined undefined-undefined