Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions

被引:0
|
作者
José Carmona
Eduardo Colorado
Tommaso Leonori
Alejandro Ortega
机构
[1] Universidad de Almería Ctra,Departamento de Matemáticas
[2] Universidad Carlos III de Madrid Avenida de la Universidad,Departamento de Matemáticas
[3] Università di Roma “Sapienza” Via Antonio,Dipartimento di Scienze di Base e Applicate per l’Ingegneria
[4] Universidad Carlos III de Madrid Avenida de la Universidad,Departamento de Matemáticas
[5] 30,undefined
来源
Fractional Calculus and Applied Analysis | 2020年 / 23卷
关键词
Primary 35J25; Secondary 35J61; 35J20; fractional Laplacian; mixed boundary conditions; concave-convex problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study a nonlinear elliptic boundary value problem defined on a smooth bounded domain involving the fractional Laplace operator and a concave-convex term, together with mixed Dirichlet-Neumann boundary conditions.
引用
收藏
页码:1208 / 1239
页数:31
相关论文
共 50 条
  • [41] A WEAK GALERKIN FINITE ELEMENT METHOD FOR THE SECOND ORDER ELLIPTIC PROBLEMS WITH MIXED BOUNDARY CONDITIONS
    Hussain, Saqib
    Malluwawadu, Nolisa
    Zhu, Peng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (05): : 1452 - 1463
  • [42] Nonexistence results for a class of fractional elliptic boundary value problems
    Fall, Mouhamed Moustapha
    Weth, Tobias
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) : 2205 - 2227
  • [43] Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions
    Korotov, Sergey
    APPLICATIONS OF MATHEMATICS, 2007, 52 (03) : 235 - 249
  • [44] On mixed boundary value problem of impulsive semilinear evolution equations of fractional order
    Lihong Zhang
    Guotao Wang
    Guangxing Song
    Boundary Value Problems, 2012
  • [45] Existence of triple solutions for elliptic equations driven by p-Laplacian-like operators with Hardy potential under Dirichlet–Neumann boundary conditions
    Jian Liu
    Zengqin Zhao
    Boundary Value Problems, 2023
  • [46] Mixed methods for degenerate elliptic problems and application to fractional Laplacian
    Cejas, Maria E.
    Duran, Ricardo G.
    Prieto, Mariana I.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S993 - S1019
  • [47] On mixed boundary value problem of impulsive semilinear evolution equations of fractional order
    Zhang, Lihong
    Wang, Guotao
    Song, Guangxing
    BOUNDARY VALUE PROBLEMS, 2012, : 1 - 8
  • [48] Sixth-order hybrid finite difference methods for elliptic interface problems with mixed boundary conditions
    Feng, Qiwei
    Han, Bin
    Minev, Peter
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 497
  • [49] Blow-Up in a Fractional Laplacian Mutualistic Model with Neumann Boundary Conditions
    Chao Jiang
    Zuhan Liu
    Ling Zhou
    Acta Mathematica Scientia, 2022, 42 : 1809 - 1816
  • [50] Subcritical nonlocal problems with mixed boundary conditions
    Molica Bisci, Giovanni
    Ortega, Alejandro
    Vilasi, Luca
    BULLETIN OF MATHEMATICAL SCIENCES, 2024, 14 (01)