Solution to the n-bubble problem on R1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^1$$\end{document} with log-concave density

被引:0
作者
John Ross
机构
[1] Southwestern University,Mathematics and Computer Science
关键词
Isoperimetry; Inequality; Density;
D O I
10.1007/s10455-023-09927-8
中图分类号
学科分类号
摘要
We study the n-bubble problem on R1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^1$$\end{document} with a prescribed density function f that is even, radially increasing, and satisfies a log-concavity requirement. Under these conditions, we find that isoperimetric solutions can be identified for an arbitrary number of regions, and that these solutions have a well-understood and regular structure. This generalizes recent work done on the density function |x|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|x |^p$$\end{document} and stands in contrast to log-convex density functions which are known to have no such regular structure.
引用
收藏
相关论文
共 36 条
  • [1] Alexander E(2023)Isoperimetric 3- and 4-bubble results on PUMP J. Undergrad. Res. 6 192-223
  • [2] Burns E(2005) with density Amer. Math. Monthly 112 526-566
  • [3] Ross J(2018)The isoperimetric problem Anal. Geom. Metr. Spaces 6 64-88
  • [4] Stovall J(2019)Double bubbles on the real line with log-convex density J. Eur. Math. Soc. 21 2301-2332
  • [5] Whyte Z(2019)Proof of the log-convex density conjeture Rose Hulman Undergrad. Math. J. 20 1-12
  • [6] Blåsjö V(2002)Isoperimetric problems on the line with density Ann. Math. 155 459-489
  • [7] Bongiovanni E(2019)Proof of the double bubble conjecture Anal. Geom. Metr. Spaces 7 45-61
  • [8] Di Giosia L(2013)Perimeter-minimizing triple bubbles in the plane and the 2-sphere Ann. Glob. Anal. Geom. 43 331-365
  • [9] Diaz A(2006)Existence of isoperimetric regions in Calc. Var. Part. Differ. Equ. 31 27-46
  • [10] Habib J(1939) with density Math. Z. 44 689-788