Full classification of permutation rational functions and complete rational functions of degree three over finite fields

被引:0
作者
Andrea Ferraguti
Giacomo Micheli
机构
[1] Max Planck Institute for Mathematics,Mathematical Institute
[2] University of Oxford,undefined
来源
Designs, Codes and Cryptography | 2020年 / 88卷
关键词
Permutation polynomials; Finite fields; Densities; 11T06; 11R32; 11R58; 11R45;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a prime power, Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} be the finite field of order q and Fq(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q(x)$$\end{document} be the field of rational functions over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}. In this paper we classify and count all rational functions φ∈Fq(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi \in \mathbb {F}_q(x)$$\end{document} of degree 3 that induce a permutation of P1(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^1(\mathbb {F}_q)$$\end{document}. As a consequence of our classification, we can show that there is no complete permutation rational function of degree 3 unless 3∣q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\mid q$$\end{document} and φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} is a polynomial.
引用
收藏
页码:867 / 886
页数:19
相关论文
共 35 条
[1]  
Amadio Guidi F(2018)Full orbit sequences in affine spaces via fractional jumps and pseudorandom number generation Math. Comput. 88 2005-2025
[2]  
Lindqvist S(2016)On monomial complete permutation polynomials Finite Fields Appl. 41 132-158
[3]  
Micheli G(2017)Complete permutation polynomials from exceptional polynomials J. Number Theory 176 46-66
[4]  
Bartoli D(1997)The Magma algebra system. I. The user language. Computational algebra and number theory (London, 1993) J. Symb. Comput. 24 235-265
[5]  
Giulietti M(2008)The transitive permutation groups of degree 32 Exp. Math. 17 307-314
[6]  
Zini G(2009)When does Finite Fields Appl. 15 615-632
[7]  
Bartoli D(2005) permute J. Symb. Comput. 39 1-30
[8]  
Giulietti M(2002)? Finite Fields Appl. 8 548-553
[9]  
Quoos L(2006)Constructing transitive permutation groups Finite Fields Appl. 12 26-37
[10]  
Zini G(2017)Enumerating permutation polynomials over finite fields by degree Math. Commun. 22 227-233