Blockwise Maximization of the Secret Key with Signal Breaks in Satellite-Based Quantum Key Distribution

被引:0
作者
Ivchenko E. [1 ,2 ,3 ,4 ]
Chernov A. [1 ,2 ,3 ,4 ]
Khmelev A. [1 ,2 ,3 ]
Kurochkin V. [1 ,2 ,3 ,4 ]
机构
[1] Moscow Institute of Physics and Technology, Dolgoprudny
[2] Russian Quantum Center, Moscow
[3] QSpace Technologies, Moscow
[4] MISIS, Moscow
关键词
channel model; free-space links; laser communications; quantum communications; quantum key distribution; satellite communications;
D O I
10.1134/S1063739723600164
中图分类号
学科分类号
摘要
Abstract: Satellite-based quantum communication is a promising technology for the secure worldwide sharing of data because quantum states are conveyed across free-space links with significantly less attenuation than optical fiber. However, the restricted communication time and dynamic parameter changes limit the secret key length, and to maximize the possible final key, an effective division of satellite-to-ground quantum communication at intervals must be chosen. Here, we present an original blockwise analysis for maximizing secret key length using the signal-to-noise ratio obtained after the frequency synchronization procedure. To validate our method, we perform an experimental simulation of the quantum key distribution protocol between the Micius satellite and the 600 mm aperture ground station with additional random channel breaks. As a result, the proposed blockwise method leads to an increase in the final key length compared to processing the full amount of noisy data. © Pleiades Publishing, Ltd. 2023. ISSN 1063-7397, Russian Microelectronics, 2023, Vol. 52, Suppl. 1, pp. S317–S321. Pleiades Publishing, Ltd., 2023.
引用
收藏
页码:S317 / S321
页数:4
相关论文
共 18 条
[1]  
Bennett C.H., Brassard G., Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci, 560, pp. 7-11, (2014)
[2]  
Gisin N., Ribordy G., Tittel W., Zbinden H., Quantum cryptography, Rev. Mod. Phys, 74, pp. 145-195, (2002)
[3]  
Xu F., Ma X., Zhang Q., Lo H.K., Pan J.W., Secure quantum key distribution with realistic devices, Rev. Mod. Phys, 92, (2020)
[4]  
Scarani V., Bechmann-Pasquinucci H., Cerf N.J., Dusek M., Lutkenhaus N., Peev M., The security of practical quantum key distribution, Rev. Mod. Phys, 81, pp. 1301-1350, (2009)
[5]  
Shor P.W., Preskill J., Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett, 85, (2000)
[6]  
Shor P.W., Algorithms for quantum computation: Discrete logarithms and factoring, (1994)
[7]  
Grover L.K., A fast quantum mechanical algorithm for database search, Proc, Twenty-Eighth Annu. ACM Symp. on Theory of Computing, Philadelphia, 1996, pp. 212-219, (1996)
[8]  
Liu Y., Zhang W.J., Jiang C., Chen J.P., Experimental twin-field quantum key distribution over 1000 km fiber distance, Phys. Rev. Lett, 130, (2023)
[9]  
Vergoossen T., Loarte S., Bedington R., Kuiper H., Ling A., Modelling of satellite constellations for trusted node QKD networks, Acta Astronaut, 173, pp. 164-171, (2020)
[10]  
Wang X., Dong C., Zhao S., Liu Y., Liu X., Zhu H., Feasibility of space-based measurement-device-independent quantum key distribution, New J. Phys, 23, (2021)