Cryptographic and Physical Zero-Knowledge Proof Systems for Solutions of Sudoku Puzzles

被引:0
作者
Ronen Gradwohl
Moni Naor
Benny Pinkas
Guy N. Rothblum
机构
[1] The Weizmann Institute of Science,Department of Computer Science and Applied Math
[2] University of Haifa,Department of Computer Science
[3] MIT,CSAIL
来源
Theory of Computing Systems | 2009年 / 44卷
关键词
Cryptography; Zero-knowledge proofs; Puzzles;
D O I
暂无
中图分类号
学科分类号
摘要
We consider cryptographic and physical zero-knowledge proof schemes for Sudoku, a popular combinatorial puzzle. We discuss methods that allow one party, the prover, to convince another party, the verifier, that the prover has solved a Sudoku puzzle, without revealing the solution to the verifier. The question of interest is how a prover can show: (i) that there is a solution to the given puzzle, and (ii) that he knows the solution, while not giving away any information about the solution to the verifier.
引用
收藏
页码:245 / 268
页数:23
相关论文
共 15 条
  • [1] Balogh J.(2003)Private computation using a PEZ dispenser Theor. Comp. Sci. 306 69-84
  • [2] Csirik J.A.(1996)Comparing information without leaking it Commun. ACM 39 77-85
  • [3] Ishai Y.(1991)Proofs that yield nothing but their validity, and a methodology of cryptographic protocol design J. Assoc. Comput. Mach. 38 691-729
  • [4] Kushilevitz E.(1989)The knowledge complexity of interactive proof systems SIAM J. Comput. 18 186-208
  • [5] Fagin R.(2006)Unwed numbers Am. Sci. 94 12-15
  • [6] Naor M.(1991)Bit commitment using pseudo-randomness J. Cryptol. 4 151-158
  • [7] Winkler P.(undefined)undefined undefined undefined undefined-undefined
  • [8] Goldreich O.(undefined)undefined undefined undefined undefined-undefined
  • [9] Micali S.(undefined)undefined undefined undefined undefined-undefined
  • [10] Wigderson A.(undefined)undefined undefined undefined undefined-undefined