On the Norms of Boman–Shapiro Difference Operators

被引:0
作者
A. G. Babenko
Yu. V. Kryakin
机构
[1] Krasovskii Institute of Mathematics and Mechanics,
[2] Ural Branch of the Russian Academy of Sciences,undefined
[3] Ural Federal University,undefined
[4] Mathematical Institute,undefined
[5] University of Wroclaw,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2021年 / 315卷
关键词
difference operator; 𝑘th modulus of continuity; norm estimate;
D O I
暂无
中图分类号
学科分类号
摘要
For given 𝑘ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in\mathbb{N}$$\end{document} and ℎ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h>0$$\end{document}, an exact inequality subscriptnormsubscript𝑊2𝑘𝑓ℎ𝐶subscript𝐶𝑘subscriptnorm𝑓𝐶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\|W_{2k}(f,h)\|_{C}\leq C_{k}\,\|f\|_{C}$$\end{document} is considered on the space 𝐶𝐶ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C=C(\mathbb{R})$$\end{document} of continuous functions bounded on the real axis ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}=(-\infty,\infty)$$\end{document} for the Boman–Shapiro difference operator assignsubscript𝑊2𝑘𝑓ℎ𝑥superscript1𝑘ℎsuperscriptsubscriptℎℎsuperscriptbinomial2𝑘𝑘1superscriptsubscript^Δ𝑡2𝑘𝑓𝑥1𝑡ℎdifferential-d𝑡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{2k}(f,h)(x):=\displaystyle\frac{(-1)^{k}}{h}\displaystyle\intop\nolimits_{- h}^{h}\!{\binom{2k}{k}}^{\!-1}\widehat{\Delta}_{t}^{2k}f(x)\Big{(}1-\frac{|t|} {h}\Big{)}\,dt$$\end{document}, where assignsuperscriptsubscript^Δ𝑡2𝑘𝑓𝑥superscriptsubscript𝑗02𝑘superscript1𝑗binomial2𝑘𝑗𝑓𝑥𝑗𝑡𝑘𝑡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\Delta}_{t}^{2k}f(x):=\sum\nolimits_{j=0}^{2k}(-1)^{j}\binom{2k}{j}f( x+jt-kt)$$\end{document} is the central finite difference of a function 𝑓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} of order 2𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k$$\end{document} with step 𝑡\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}. For each fixed 𝑘ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in\mathbb{N}$$\end{document}, the exact constant subscript𝐶𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{k}$$\end{document} in the above inequality is the norm of the operator subscript𝑊2𝑘⋅ℎ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_{2k}(\cdot,h)$$\end{document} from 𝐶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} to 𝐶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. It is proved that subscript𝐶𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{k}$$\end{document} is independent of ℎ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document} and increases in 𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}. A simple method is proposed for the calculation of the constant subscript𝐶subscript→𝑘subscript𝐶𝑘2.6699263…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{*}=\lim_{k\to\infty}C_{k}=2.6699263\mathinner{\ldotp\ldotp\ldotp}$$\end{document} with accuracy superscript107\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^{-7}$$\end{document}. We also consider the problem of extending a continuous function 𝑓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} from the interval 11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[-1,1]$$\end{document} to the axis ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{R}$$\end{document}. For extensions assignsubscript𝑔𝑓subscript𝑔𝑓𝑘ℎ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{f}:=g_{f,k,h}$$\end{document}, 𝑘ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\in\mathbb{N}$$\end{document}, 0ℎ12𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<h<1/(2k)$$\end{document}, of functions 𝑓𝐶11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in C[-1,1]$$\end{document}, we obtain new two-sided estimates for the exact constant subscriptsuperscript𝐶𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}_{k}$$\end{document} in the inequality subscriptnormsubscript𝑊2𝑘subscript𝑔𝑓ℎ𝐶ℝsubscriptsuperscript𝐶𝑘subscript𝜔2𝑘𝑓ℎ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\|W_{2k}(g_{f},h)\|_{C(\mathbb{R})}\leq C^{*}_{k}\,\omega_{2k}(f,h)$$\end{document}, where subscript𝜔2𝑘𝑓ℎ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega_{2k}(f,h)$$\end{document} is the modulus of continuity of 𝑓\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} of order 2𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2k$$\end{document}. Specifically, for every positive integer 𝑘6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\geq 6$$\end{document} and every ℎ012𝑘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in\big{(}0,1/(2k)\big{)}$$\end{document}, we prove the double inequality 512subscriptsuperscript𝐶𝑘2superscript𝑒2subscript𝐶\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5/12\leq C^{*}_{k}<\big{(}2+e^{-2}\big{)}\,C_{*}$$\end{document}.
引用
收藏
页码:S55 / S66
相关论文
共 30 条
  • [1] Shapiro HS(1968)A Tauberian theorem related to approximation theory Acta Math. 120 279-292
  • [2] Boman J(1971)Comparison theorems for a generalized modulus of continuity Arkiv Mat. 9 91-116
  • [3] Shapiro HS(2009)On the exact constant in Jackson–Stechkin inequality for the uniform metric Constr. Approx. 29 157-179
  • [4] Foucart S(2013)Special moduli of continuity and the constant in the Jackson–Stechkin theorem Constr. Approx. 38 339-364
  • [5] Kryakin Yu(2018)On constants in the Jackson–Stechkin theorem in the case of approximation by algebraic polynomials Proc. Steklov Inst. Math. 303 18-30
  • [6] Shadrin A(1951)On the order of best approximations of continuous functions Izv. RAN 15 219-242
  • [7] Babenko AG(1968)The approximation of functions by algebraic polynomials Math. USSR-Izv. 2 735-743
  • [8] Kryakin YuV(1934)Analytic extensions of differentiable functions defined in closed sets Trans. Amer. Math. Soc. 36 63-89
  • [9] Staszak PT(1934)Functions differentiable on the boundaries of regions Ann. Math. 35 482-485
  • [10] Babenko AG(1936)Differentiable functions defined in arbitrary subsets of Euclidean space Trans. Amer. Math. Soc. 40 309-317