Identities for deformation quantizations of almost Poisson algebras

被引:0
|
作者
Vladimir Dotsenko
机构
[1] Université de Strasbourg et CNRS,Institut de Recherche Mathématique Avancée, UMR 7501
来源
Letters in Mathematical Physics | / 114卷
关键词
Deformation quantization; Non associative algebras; Operads; 53D55; 17A20; 17A30; 18M70;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an algebraic viewpoint of the problem of deformation quantization of the so-called almost Poisson algebras, which are algebras with a commutative associative product and an antisymmetric bracket which is a biderivation but does not necessarily satisfy the Jacobi identity. From that viewpoint, the main result of the paper asserts that, by contrast with Poisson algebras, the only reasonable category of algebras in which almost Poisson algebras can be quantized is isomorphic to the category of almost Poisson algebras itself, and the trivial two-term quantization formula already gives a solution to the quantization problem.
引用
收藏
相关论文
共 50 条
  • [31] Deformation quantization and the action of Poisson vector fields
    Sharygin G.
    Lobachevskii Journal of Mathematics, 2017, 38 (6) : 1093 - 1107
  • [32] DEFORMATION QUANTIZATION OF POISSON MANIFOLDS IN THE DERIVATIVE EXPANSION
    Bratchikov, A. V.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (02) : 219 - 224
  • [33] Causal Poisson bracket via deformation quantization
    Berra-Montiel, Jasel
    Molgado, Alberto
    Palacios-Garcia, Cesar D.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2016, 13 (07)
  • [34] Two-dimensional Jordan algebras: Their classification and polynomial identities
    Diniz, Diogo
    Goncalves, Dimas Jose
    da Silva, Viviane Ribeiro Tomaz
    Souza, Manuela
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 664 : 104 - 125
  • [35] Poisson cohomology, Koszul duality, and Batalin-Vilkovisky algebras
    Chen, Xiaojun
    Chen, Youming
    Eshmatov, Farkhod
    Yang, Song
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2021, 15 (03) : 889 - 918
  • [36] REMARKS ON MODULES OVER DEFORMATION QUANTIZATION ALGEBRAS
    Nest, Ryszard
    Tsygan, Boris
    MOSCOW MATHEMATICAL JOURNAL, 2004, 4 (04) : 911 - 940
  • [37] Deformation Quantization of Poisson Structures Associated to Lie Algebroids
    Neumaier, Nikolai
    Waldmann, Stefan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [38] On the Fedosov deformation quantization beyond the regular Poisson manifolds
    Dolgushev, VA
    Isaev, AP
    Lyakhovich, SL
    Sharapov, AA
    NUCLEAR PHYSICS B, 2002, 645 (03) : 457 - 476
  • [39] On free Gelfand-Dorfman-Novikov-Poisson algebras and a PBW theorem
    Bokut, L. A.
    Chen, Yuqun
    Zhang, Zerui
    JOURNAL OF ALGEBRA, 2018, 500 : 153 - 170
  • [40] Quantized Nambu-Poisson manifolds and n-Lie algebras
    DeBellis, Joshua
    Saemann, Christian
    Szabo, Richard J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (12)